• Title/Summary/Keyword: LoRa technology

Search Result 105, Processing Time 0.027 seconds

A Study on the Internet of Things (IoT) Lab Education based on LoRa Communication (LoRa 통신 기반 사물인터넷(IoT) 실습 교육에 관한 연구)

  • Han-jong Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.549-555
    • /
    • 2023
  • The representative technology of the WWAN wireless communication network used in the Internet of Things is LoRa communication technology, and LoRa communication uses the ISM band. The 920 MHz (920.9 MHz~923.3 MHz) band frequency, which is used as a domestic LoRa frequency, had a problem in performing LoRa network practice in the curriculum using a commercially available LoRa modules that have been used in Europe and the United States because of different frequency band, but a RYLR896 LoRa module was developed that allowed RF frequency to be programmed. With this module, this paper confirmed that the frequency can be set at a specified frequency in Korea using AT commands. In addition, using these RYLR896 LoRa modules, a LoRa network consisting of end nodes and gateways was constructed and practiced to confirm that development equipment capable of practicing the RYLR896 LoRa module and IoT was operating normally.

Link Performance Analysis of LoRa for Real-time Information Gathering in Maritime Conditions (실시간 해상 정보 수집을 위한 LoRa 링크 성능분석)

  • Shin, Jaeho;Lim, Junyeong;Kim, Donghyun;Kim, Jongdeok
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.303-310
    • /
    • 2018
  • LoRaWAN(Long Range Wide Area Network) is a standard for low-power, long-range, low-speed communication as announced in the LoRa Alliance. LoRaWAN addresses the physical layer and medium access control layer and the technology used in the physical layer is referred to as LoRa. LoRa can be used for remote monitoring and remote control in maritime conditions. However, unlike land, marine environment is not only difficult to construct an infrastructure for service provision, but also difficult to analyze LoRa performance in maritime. In this study, we construct an infrastructure using cloud platform and analyze LoRa link performance in maritime conditions.

Development of Science IoT Network (ScienceLoRa) using Low Power Wide Area Technologies (저전력 장거리 통신기술을 이용한 과학기술 IoT 네트워크 (ScienceLoRa) 개발)

  • Kim, Joobum;Seok, Woojin;Kwak, Jaiseung;Kim, Kiwook
    • KNOM Review
    • /
    • v.22 no.2
    • /
    • pp.29-38
    • /
    • 2019
  • The rapid growth of IoT (Internet of Things) owing to the advancement and spread of technologies such as wireless networks, communication modules, sensors, smart terminals, etc. enables the development of new services in diverse public and private sectors. In particular, research on IoT technology and its applications has increased in the field of science. To establish an IoT infrastructure in this field, KREONET launched the wireless IoT network, called ScienceLoRa, based on low power wide area network (LPWAN). ScienceLoRa aims to collect a variety of data from sensors and utilize and analyze the collected data for research in a variety of scientific fields. In this article, the authors present the concept, current status, applications and future plans of ScienceLoRa.

LoRa Technology Analysis and LoRa Use Case Analysis By Country (LoRa 기술 및 각 국가별 LoRa 활용사례 분석)

  • Mah, Sung-Hoon;Kim, Byung-Seo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • Due to evolving IoT technologies, the various application services using clothing, sport equipment, and wearable devices equipped with extream small communication devices have been actively developed. On the other hands, since these serveices requires long distance communications, Long Distance wireless communication technology LPWAN Research has been proceeded due to limitation of the commuication distance of Wi-Fi and Zigbee which were considered as representative technologies for IoT. Iin this paper, we introduces LoRa technology in detail, which is a non-band network technology among LPWAN technologies, and investigates the use cases of domestic as well as international countries.

Performance Analysis of LoRa(Long Range) according to the Distances in Indoor and Outdoor Spaces (실내·외 공간에서 거리에 따른 LoRa(Long Range) 성능 분석)

  • Lim, Junyeong;Lee, Jaemin;Kim, Donghyun;Kim, Jongdeok
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.733-741
    • /
    • 2017
  • LPWAN(Low Power Wide Area Network) technology is M2M (Machine to Machine) networking technology for the Internet of Things. The technology is designed to support low-power, long-distance and low-speed communications that are typical of LoRaWAN(Long Range Wide Area Network). To exchange inter-object information using a LoRaWAN, the link performances for various environments must be known. however, active performance analysis research that is based on an empirical environment is nonexistent. Therefore, this paper empirically evaluates the performance of the LoRa (Long Range) link, a physical communication technology of the LoRaWAN for various variables that may affect the link quality in indoor and outdoor environments. To achieve this, a physical performance monitoring system was designed and implemented. A communication experiment environment was subsequently constructed based on the indoor and outdoor conditions. The SNR(Signal to Noise Ratio), RSSI(Received Signal Strength Indication), and the PDR(Packet Delivery Ratio) were evaluated.

A Design of Multi-hop Network Protocol based on LoRaWAN Gateway

  • Kim, Minyoung;Jang, Jongwook
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.109-115
    • /
    • 2019
  • Currently, LPWA(Low Power Wide Area) communication technology is widely used due to the development of IoT(Internet of Things) technology. Among the LPWA technologies, LoRaWAN(Long Range Wide Area Network) is widely used in many fields due to its wide coverage, stable communication speed, and low-cost modem module prices. In particular, LoRa(Long Range) can easily construct LoRaWAN with a dedicated gateway. So many organizations are building their own LoRaWAN-based networks. The LoRaWAN Gateway receives the LoRa packet transmitted from an End-device installed in the adjacent location, converts it into the Internet protocol, and sends the packet to the final destination server. Current LoRa Gateway uses a single-hop method, and each gateway must include a communication network capable of the Internet. If it is the mobile communication(i.e., WCDMA, LTE, etc.) network, it is required to pay the internet usage fee which is installed in each gateway. If the LoRa communication is frequent, the user has to spend a lot of money. We propose an idea on how to design a multi-hop protocol which enables packet routing between gateways by analyzing the LoRaWAN communication method implemented in its existing single-hop way in this paper. For this purpose, this paper provides an analysis of the standard specification of LoRaWAN and explains what was considered when such protocol was designed. In this paper, two gateways have been placed based on the functional role so as to make the multi-hop protocol realized: (i) hopping gateway which receives packets from the end-device and forwards them to another gateway; and (ii) main gateway which finally transmits packets forwarded from the hopping gateway to the server via internet. Moreover, taking into account that LoRaWAN is wireless mobile communication, a level-based routing method is also included. If the protocol proposed by this paper is applied to the LoRaWAN network, the monthly internet fee incurred for the gateway will be reduced and the reliability of data transmission will be increased.

Energy Consumption Model of LoRa Class B in LoRaWAN (LoRaWAN에서 LoRa Class B의 에너지 소비 모델)

  • Hong, Jiyeon;Lee, Gyeongheon;youn, Joosang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.105-107
    • /
    • 2019
  • 최근 몇 년간 소량의 데이터를 송수신하는 Massive IoT 네트워크에 많은 관심을 가지고 있다. 이러한 환경을 구축하기 위해서 저전력 광역 네트워크(LPWAN) 기술 중 LoRa(Long Range) 네트워크를 사용하고 있다. 대부분의 IoT 응용 서비스는 디바이스가 장시간 안정적으로 작동해야 하므로 에너지 효율성을 중점으로 두고 LoRa 디바이스의 수명을 최대화하기 위한 디바이스의 여러 동작들을 설계하는 에너지 소비 모델링이 중요하다. 따라서 본 논문에서는 LoRa Class B 통신 방식의 에너지 소비 모델을 정의하고 성능을 평가한다.

  • PDF

A Study on IoT Security Technology using LoRa (LoRa 기반 IoT 보안대책에 대한 연구)

  • Chung, Youngseek;Cha, Jaesang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.185-189
    • /
    • 2017
  • According to the rapid growth of Internet of Things (IoT) technology, we are able to connect between human and objects and between objects through network, allowing transmission and reception of information beyond the limits of space. These days, Low Power Wide Area (LPWA) technologies becomes popular more and more, to implement IoT infrastructure effectively. In this paper, this study aims to analyze LoRa, one of LPWA technologies, and suggest IoT security technology using LoRa to minimize threats to security.

Structural Health Monitoring System for Large-Bridge-Based LoRa LPWAN (LoRa LPWAN 기반의 대형 교량 구조건전성 모니터링 시스템)

  • Jin-Oh Park;Ki-Don Kim;Kyung-soo Kim;Sang-Heon Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.49-56
    • /
    • 2023
  • With the development of technology worldwide, bridges are becoming larger, and the number of old bridges is also rapidly increasing. Monitoring the structural health of large, aging bridges is essential to preventing large-scale accidents. In this study, the application of a LoRa low-power wide-area network (LPWAN)-based wireless measurement system was investigated, and a LoRa wireless measurement system was established in the cable-stayed bridge section of Cheonsa Bridge, located in Shinan-gun, Jeollanam-do, Korea. The applicability of the LoRa LPWAN-based wireless monitoring system to large marine bridges was reviewed by comparing the performance and economic feasibility with wire-based monitoring systems that were built and operated by establishing a measurement system for the pylons, cables, and reinforcing girders of the bridge.

Technical Analysis of LoRa for Problems on Outdoor Culture Smart Farm (노지재배 스마트팜의 문제점을 해결하기 위한 LoRa 기술 분석)

  • Jaechan Lee;Sanghyeon Jeon;Junyoung Lee;Yeunwoong Kyung
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, there have been increasing interests in researches to apply wireless communication technologies for smart farm. This paper introduces the problems in the smart farm for the outdoor culture and technical considerations to solve the problems. As candidate technologies, this paper selects LoRa, Sigfox, NB-IoT, and Wi-Fi and then determines that LoRa is a suitable technology based on the CAPEX, coverage, transmission rate, battery, and the price. To provide technical analysis, this paper introduces technologies related to the physical and medium access control (MAC) layers as well as the security. Specifically, this paper includes the modulation technology in the physical layer, Class (Class A, B, and C) based protocol operations in MAC layer, and security architecture based on the LoRa version.