• Title/Summary/Keyword: Lizard locomotion

Search Result 2, Processing Time 0.014 seconds

Kinematic Modelling of the Trot of a Lizard Based on the Motion Capture (모션 캡쳐에 기반한 도마뱀 속보에 대한 기구학적 모델링)

  • Kim, Chang Hoi;Shin, Ho Cheol;Lee, Heung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.264-273
    • /
    • 2013
  • The importance of the robots has emerged as the means of minimizing the casualties in the future war, and, thus, the biomimetic robots mimicking the optimized organisms has been actively studied. The robot inspired lizard is suitable for reconnaissance and the surveillance in narrow areas. In this paper, we analyzed the locomotion of a lizard by motion capture system using the infrared markers. We attached 21 markers to the joints of the lizard. By considering the measured data, we analyzed the walking motion of the lizard which trots in a sprawled posture. Moreover, we proposed the 25 dof kinematic model which was able to reproduce the gait of the lizard faithfully. The model was verified by simulations.

Markerless Motion Capture Algorithm for Lizard Biomimetics (소형 도마뱀 운동 분석을 위한 마커리스 모션 캡쳐 알고리즘)

  • Kim, Chang Hoi;Kim, Tae Won;Shin, Ho Cheol;Lee, Heung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.136-143
    • /
    • 2013
  • In this paper, a algorithm to find joints of a small animal like a lizard from the multiple-view silhouette images is presented. The proposed algorithm is able to calculate the 3D coordinates so that the locomotion of the lizard is markerlessly reconstructed. The silhouette images of the lizard was obtained by a adaptive threshold algorithm. The skeleton image of the silhouette image was obtained by Zhang-Suen method. The back-bone line, head and tail point were detected with the A* search algorithm and the elimination of the ortho-diagonal connection algorithm. Shoulder joints and hip joints of a lizard were found by $3{\times}3$ masking of the thicked back-bone line. Foot points were obtained by morphology calculation. Finally elbow and knee joint were calculated by the ortho distance from the lines of foot points and shoulder/hip joint. The performance of the suggested algorithm was evaluated through the experiment of detecting joints of a small lizard.