• 제목/요약/키워드: Living Body Signal

검색결과 21건 처리시간 0.045초

Implementation of Intelligent Home Network and u-Healthcare System based on Smart-Grid

  • Kim, Tae Yeun;Bae, Sang Hyun
    • 통합자연과학논문집
    • /
    • 제9권3호
    • /
    • pp.199-205
    • /
    • 2016
  • In this paper, we established ZIGBEE home network and combined smart-grid and u-Healthcare system. We assisted for amount of electricity management of household by interlocking home devices of wireless sensor, PLC modem, DCU and realized smart grid and u-Healthcare at the same time by verifying body heat, pulse, blood pressure change and proceeded living body signal by using SVM algorithm and variety of ZIGBEE network channel and enabled it to check real-time through IHD which is developed by user interface. In addition, we minimized the rate of energy consumption of each sensor node when living body signal is processed and realized Query Processor which is able to optimize accuracy and speed of query. We were able to check the result that is accuracy of classification 0.848 which is less accounting for average 17.9% of storage more than the real input data by using Mjoin, multiple query process and SVM algorithm.

Facile analysis of protein-protein interactions in living cells by enriched visualization of the p-body

  • Choi, Miri;Baek, Jiyeon;Han, Sang-Bae;Cho, Sungchan
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.526-531
    • /
    • 2018
  • Protein-Protein Interactions (PPIs) play essential roles in diverse biological processes and their misregulations are associated with a wide range of diseases. Especially, the growing attention to PPIs as a new class of therapeutic target is increasing the need for an efficient method of cell-based PPI analysis. Thus, we newly developed a robust PPI assay (SeePPI) based on the co-translocation of interacting proteins to the discrete subcellular compartment 'processing body' (p-body) inside living cells, enabling a facile analysis of PPI by the enriched fluorescent signal. The feasibility and strength of SeePPI (${\underline{S}}ignal$ ${\underline{e}}nhancement$ ${\underline{e}}xclusively$ on ${\underline{P}}-body$ for ${\underline{P}}rotein-protein$ ${\underline{I}}nteraction$) assay was firmly demonstrated with FKBP12/FRB interaction induced by rapamycin within seconds in real-time analysis of living cells, indicating its recapitulation of physiological PPI dynamics. In addition, we applied p53/MDM2 interaction and its dissociation by Nutlin-3 to SeePPI assay and further confirmed that SeePPI was quantitative and well reflected the endogenous PPI. Our SeePPI assay will provide another useful tool to achieve an efficient analysis of PPIs and their modulators in cells.

모바일기반의 HRV 인터페이스에 처리에 대한 생체계측 시스템 모델링의 구현 (Embodiment of living body measure system modelling for rehalibitation treatment of positive simulation for HRV algorithm analysis interface of Mobile base)

  • 김휘영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.1013-1014
    • /
    • 2006
  • Mobilecomputer offers more fundamental role than role assistance enemy of modern technology equipment and new Information Technology can reconsider, and reconstruct creatively accuracy of physiological concept. That military register symptoms are developed of disease, before far before rehalibitation, offer possibility that can intervene in process that motive change of military register symptoms after rehalibitation. But, that many parameters become analysis target and mathematical settlement and equalization system of neted data of that is huge, same time collection of all datas can lift difficulty etc.. These main weakness puts in structural relation between elements that compose system. Therefore, dynamics research that time urea of systematic adjustment has selected method code Tuesday nerve dynamics enemy who groping of approach that become analysis point is proper and do with recycling bioelectricity signal. Nature model of do living body signal digital analysis chapter as research result could be developed and scientific foundation groping could apply HSS (Hardware-software system) by rehalibitation purpose. Special quality that is done radish form Tuesday of bioelectricity signal formation furthermore studied, and by the result, fundamental process of bodysignal in do structure circuit form of analog - digital water supply height modelling do can

  • PDF

AVR MCU를 적용한 휴대형 HRV 생체 계측시스템의 설계 및 제작(II) (Design and manufacture of carrying along style HRV operational bioinstrumentation system that apply AVR MCU(II))

  • 김휘영;박두열
    • 한국컴퓨터산업학회논문지
    • /
    • 제8권4호
    • /
    • pp.295-302
    • /
    • 2007
  • 모바일 컴퓨팅은 무선이동체 통신과 휴대 정보 터미널, 인터넷을 이용하여, 컴퓨터와 인체의 정보 기술을 효과적으로 연계시켜, when, where, who, 이동하면서 사용이 가능한 현대 기술의 중추 적인 역할을 제공하며 새로운 기술을 생리학적 측정으로 재고하고, 창조적으로 재건 할 수 있다. 특히, 고령화 사회에서 병적 징후들이 질병으로 발전되기 이전에 생체 변화를 유도하는 과정에 개입할 수 있는 가능성을 제공해 줄 수가 있다. 그러나 많은 파라미터가 데이터처리, 데이터의 기준화의 모호함, 데이터의 동시수집이 어려움 등을 들 수 있다. 따라서 본 연구에서는 모바일 컴퓨팅을 활용하여 시간적 제한요소를 배제하고, 정확한 분석이 되는 접근으로 분석이 타당하고 생체전기 신호를 바탕으로 하는 모바일 신경역학적 코드화 방법을 채택하여 시스템을 구현하여 실험한 결과, 생체 신호 모바일 분석 장치의 모델이 될 수가 있었다.

  • PDF

소화기관내의 압력 모니터링 시스템 (Pressure Monitoring System in Gastro-Intestinal Track)

  • 김용인;박석호;김병규;박종오
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1089-1094
    • /
    • 2004
  • Diseases in the gastro-intestinal track are on an increasing trend. In order to diagnose a patient, the various signals of the digestive organ, such as temperature, pH, and pressure, can offer the helpful information. Among the above mentioned signals, we choose the pressure variation as a monitoring signal. The variation of a pressure signal of the gastro-intestinal track can offer the information of a digestive trouble or some clues of the diseases. In this paper, a pressure monitoring system for the digestive organs of a living pig is presented. This system concept is to transmit the measured biomedical signals from a transmitter in a living pig to wireless receiver that is positioned out of body. The integrated solution includes the following parts: (1) the swallow type pressure capsule, (2) the receiving set consisting of a receiver, decoder box, and PC. The merit of the proposed system if that the monitoring system can supply the precise and repeatable pressure in the gastro-intestinal track. In addition, the design of low power consumption enables it to keep sending reliable signals while the pressure capsule is working in the digestive organ. The subject of the study for the pressure monitoring system is in-vivo experiments for a living pig. We achieved the pressure tracings in digestive organs and verified the validity of system after several in-vivo tests using pressure monitoring system. As a result, we found each organ has its own characterized pressure fluctuation.

Pressure Monitoring System in Gastro-Intestinal Tract

  • Kim, Byung-Kyu;Kim, Yong-In;Park, Suk-Ho;Jo, Jin-Ho;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.196-201
    • /
    • 2005
  • Diseases in the gastro-intestinal tract are on an increasing trend. In order to diagnose a patient, various signals of the digestive organ, such as temperature, pH, and pressure, can offer the helpful information. Among the above mentioned signals, we choose the pressure variation as a monitoring signal. The variation of a pressure signal of the gastro-intestinal tract can offer the information of a digestive trouble or some clues of the diseases. In this paper, a pressure monitoring system for the digestive organs of a living pig is presented. This is why a pig's gastro-intestinal tract is very similar as human's. This system concept is to transmit the measured biomedical signals from a transmitter in a living pig to a wireless receiver that is positioned out of body. The integrated solution includes the swallow type pressure capsule and the receiving set consisting of a receiver, decoder circuit. The merit of the proposed system is that the monitoring system can supply the precise and a durable characteristic to measure and to transmit a signal in the gastro-intestinal tract. We achieved the pressure tracings in digestive organs and verified the validity of system after several in-vivo tests using the pressure monitoring system. Through various experiments, we found each organ has its own characterized pressure fluctuation.

  • PDF

In vivo ESR measurement of free radical reaction in living mice

  • Han, Jin-Yi;Hideo Utsumi
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2000년도 춘계학술대회
    • /
    • pp.6-7
    • /
    • 2000
  • Recently, free radicals such as active oxygen species, nitric oxide, etc are believed to be one of the key substances in physiological and pathological, toxicological phenomena, and oxidative damages, and all organism have defencing system against such as free radicals. Formation and extinction of free radicals may be regulated through bio-redox system, in which various enzymes and compounds should be involved in very complicated manner. Thus, direct and non-invasive measurement of in vivo free radical reactions with living animals must be essential to understand the role of free radicals in pathophysiological phenomena. Electron spin resonance spectroscopy (ESR) is very selective and sensitive technique to detect free radicals, but a conventional ESR spectrometer has large detect in application to living animals, since high frequent microwave is absorbed with water, resulting in generation of high fever in living body. In order to estimate in vivo free radical reactions in living whole animals, we develop in vivo ESR-CT technique using nitroxide radicals as spin probes. Nitroxide radicals and their reduced forms, hydroxylamines, are known to interact with various redox systems. We found that! ! the signal decay due to reduction of nitroxyl radicals is influenced by aging, inspired oxygen concentration, ischemia-referfusion injury, radiation, etc. In the present paper, I will introduce in vivo ESR technique and my laboratory recent results concerning non-invasive evaluation of free radical reactions in living mice.

  • PDF

Development Brief of A Body Area Network for Ubiquitous Healthcare : An Introduction to Ubiquitous Biomedical Systems Development Center

  • Hong Joo-Hyun;Kim Nam-Jin;Cha Eun-Jong;Lee Tae-Soo
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권5호
    • /
    • pp.331-335
    • /
    • 2005
  • The fusion technology of small sensor and wireless communication was followed by various application examples of the embedded system, where the social infrastructural facilities and ecological environment were wirelessly monitored. In addition, this technology represents the primary application area being extended into the healthcare field. In this study, a body area network for ubiquitous healthcare is presented. More specifically this represents a wireless biomedical signal acquisition device characterized by small size, low power consumption, pre-processing and archiving capability. Using this device, a new method for monitoring vital signs and activity is created. A PDA-based wireless sensor network enables patients to be monitored during their daily living, without any constraints. Therefore, the proposed method can be used to develop Activities of Daily Living (ADL) monitoring devices for the elderly or movement impaired people. A medical center would be able to remotely monitor the current state of elderly people and support first-aid in emergency cases. In addition, this method will reduce medical costs in society, where the average life expectancy is increasing.

모바일 기반의 HRV 알고리즘 분석 인터페이스에 대한 실증적 시뮬레이션의 재활치료용 생체계측 시스템 모델링의 구현 (Embodiment of living body measure system modeling for Rehalibitation treatment of positive simulation for HRV algorithm analysis interface of Mobile base)

  • 김휘영
    • 한국컴퓨터산업학회논문지
    • /
    • 제7권4호
    • /
    • pp.437-446
    • /
    • 2006
  • 모바일 컴퓨터는 현대기술의 보조적 역할보다는 중추적인 역할을 제공하고 새로운기술을 생리학적 개념의 정확성을 재고하고, 창조적으로 재건할 수 있다. 병적징후들이 질병으로 발전되기 휠씬 이전에 재활전, 후 변화를 유도하는 과정에 개입할 수 있는 가능성을 제공해 준다. 그러나 많은 파라미터가 분석대상, 수학적 처리 및 얻어진 데이터의 평준화 시스템의 거대함, 모든 데이터의 동시수집이 어려움 등을 들 수 있다. 이러한 주점은 시스템을 구성하는 요소들간의 구조적인 연관성에 두고 있다. 따라서 본 연구에서는 시스템적 조절의 시간적 요소가 지니는 역학연구가 분석핵심이 되는 접근법의 모색이 타당하고 재활용 생체전기 신호를 바탕으로 하는 신경역학적 코드화 방법을 채택했다. 연구결과, 생체신호 디지털 분석장치의 바탕모델이 개발할 수가 있었고 학문적인 모색을 목적으로 재활치료용HSS(Hardware-software system)를 적용시킬 수가 있었다. 나아가 모바일기반의 생체전기 신호형성의 비전형화된 특성이 연구되었고 그 결과, 생체계측 신호의 기본적인 과정을 아날로그-디지털 송수신장치의 구조회로 형태로 모델링 할 수 있었다.

  • PDF

PDA기반의 HRV분석 인터페이스에 대한 시뮬레이션의 재활치료용 생체계측 시스템 모델링의 구현 (Embodiment of living body measure system modelling for rehalititation treatment of simulation for HRV analysis interface of PDA base)

  • 김휘영;최진영;박성준;김진영;박성준;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.2167-2168
    • /
    • 2006
  • Mobilecomputer of offers more fundamental role than role assistance enemy of modem technology equipment and new Information Technology can reconsider, and reconstruct creatively accuracy of physiological concept. That military register symptoms are developed of disease, before far before rehalibitation, of for possibility that can intervene in process that motive change of military register symptoms after rehalibitation. But, that many parameters become analysis target and mathematical settlement and equalization system of noted data of that is huge, same time collection of all datas can lift difficulty etc.. These main weakness puts in structural relation between elements that compose system. Therefore, dynamics research that time urea of systematic adjustment has selected method code Tuesday nerve dynamics enemy who groping of approach that become analysis point is proper and do with recycling bioelectricity signal. Nature model of do living body signal digital analysis chapter as research result could be developed and scientific foundation groping could apply HSS (Hardware-software system) by rehalibitation purpose. Special quality that isdone radish form Tuesday of bioelectricity signal formation furthermore studied, and by the result, fundamental process of bodysignal in do structure circuit form of analog - digital water supply height modelling do can.

  • PDF