• Title/Summary/Keyword: Livestock waste additives

Search Result 6, Processing Time 0.025 seconds

Development of Livestock Manure Additives for Ammonia Reduction in High School Field Education (고등학교 현장 교육에서의 암모니아 저감용 축분첨가제 개발)

  • Woo-Whan Jang;Sang-Chul Mun;In-Hag Choi
    • Journal of Environmental Science International
    • /
    • v.32 no.10
    • /
    • pp.741-744
    • /
    • 2023
  • This study focused on high school laboratory research and the main purpose was to develop alternative additives for livestock waste and ammonia volatilization methods with high school students as participants and to provide information to business owners based on the results. Compared to the control groups, The bentonite and illite treatment groups had similar ammonia volatilization, pH, EC, and total nitrogen content. In particular, the alum and aluminum chloride mixed treatment group showed low pH and ammonia volatilization, and high EC and total nitrogen content for poultry litter. As a result, when focusing on high school laboratory research, the alum and aluminum chloride mixed agent treatment fulfilled its role as an alternative additive for ammonia reduction. In addition, this approach can be suggested as a method to solve difficulties in adapting to the field through a practical cooperative relationship with livestock farms.

Feasibility Study on Use of Livestock Manure as Solid Refuse Fuel by Torrefaction Method (반탄화 기술을 이용한 가축분뇨의 고형연료화 가능성 연구)

  • Lee, Yongho;Sanjusren, Oyun-Erdene;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.560-571
    • /
    • 2019
  • In the study, used torrefaction method to make sample from organic waste of livestock manure for Biomass-solid refuse fuel feasibility study of torrefied materials. Fallen leaves and sawdust added in torrefaction methods with livestock manure, that additives were used to improve the lower calorific value of livestock manure. During the torrefaction experiment, the reaction temperature was varied from $200^{\circ}C$ to $260^{\circ}C$ and $20^{\circ}C$ to prepare a sample. The reaction time was divided into 15, 30 and 45min to determine the effect of the experimental conditions on the torrified products. The additives were mixed at a ratio of 9:1 and 8:2 (Cow manure: additive) relative to the livestock manure. Through this experiment, it was obtained 3,500 kcal/kg standard product of solid fuel produced in Korea and improved product was obtained by adding additives.

Nutritive Quality of the Crude Organic Fertilizer Produced with Coastal Aquaculture-Ground Bottom Sediments, Organic Wastes and Alkaline Stabilizers (유기성 폐기물과 알칼리 안정화제가 첨가된 연안 양식장 퇴적물 조비료의 영양성분 조성)

  • 김정배;강창근;이근섭;박정임;이필용
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1291-1298
    • /
    • 2002
  • To utilize coastal aquaculture ground bottom sediment in which concentrations of harmful pollutants are low and organic content is high as an organic fertilizer alkaline stabilizers such as CaO, Oyster shell, Mg(OH)$_2$ were added to the bottom sediment organic additives of livestock or food wastes. Nutritive qualities of crude fertilizers were measured to examine effects of alkaline stabilizers and organic waste additions. The Mg(OH)$_2$-added crude fertilizer had significantly lower total carbon(T-C) and nitrogen(T-N) content, reflecting the dilution effect due to great amount of Mg(OH)$_2$ addition. However, the addition of oyster shell had no significant effect on the T-C and T-N content of the fertilizer. $P_2O_5$ and $K_2$O content was considerably higher in the mixed sample of aquaculture ground bottom sediments and livestock wastes than in the mixture of the sediments and food wastes, resulting from higher $P_2O_5$ and $K_2$O content in livestock wastes. Addition of Mg(OH)$_2$ increased the content of MgO In the crude fertilizer but significantly reduced the content of other nutritive elements such as $P_2O_5$, $K_2$O and CaO. Addition of oyster shell as an alkaline stabilizer seemed to have the advantage of saving time and expenses far dryness due to its role as a modulator of water content. Moreover, additions of effect Mg(OH)$_2$ decreased the concentrations of heavy metals in the fertilizer by the dilution while additions of oyster shell had no influence on heavy metal concentrations in the fertilizer.

The Effects of Dietary Probioties Fortified with Micro-minerals on Egg Production and the Improvement of Egg Quality in Old Layer (사료내 미량광물질 강화 복합미생물 첨가가 산란노계의 계란생산 및 난질개선에 마치는 영향)

  • Jeong, Soo-Jin;Joo, Eun-Jung;Lee, Woo-Sic;Yon, Byeng-Sun;Lee, Ju-Sam;Nam, Ki-Taek;Hwang, Seong-Gu
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.2
    • /
    • pp.219-230
    • /
    • 2004
  • In recent years, the consumption of livestock products were markedly decreased by awareness of world-widely occurred diseases including mad cow disease, Foot and mouth disease, Hog cholera, and Poultry Influenza virus. the consumers ara also wanting to have highly safe food such as organic animal products because of concerning about residual of antibiotics in animal products. However, disease control and impairment of productivity are the major problem in organic animal production. On these points of view, the present study was undertaken to investigate the effects of 1% or 2% of dietary probiotics fortified with various minerals on improvement of egg production and egg quality in old lay6r feeding low quality feed mainly composed of food waste, sesame meal, and rice bran. After 4 weeks of experimental feeding, the diameter of spreading of egg white was clearly decreased from 11.2cm of control eggs to 10.5m and 10.1m in 1% and 2% treatment group eggs, respectively. The color of egg yolk was 9.3 in control eggs but remarkably increased in treatment groups showing 10.1~10.2. Egg production was 75.8% in control layers but significantly increased to 79.8% of 1% treatment group and 82.9% of 2% treatment group layers. Egg weights (C : 66.3g, 1% : 73.2g, and 2% : 76.7g) and egg shell thickness (C : 0.33mm, 1% : 0.35mm and 2% : 0.36mm) were also increased by the addition of 1% or 2% of probiotics when compared to those of control group eggs. All together, it has been suggested that dietary addition of probiotics fortified with various minerals can improve the egg quality and egg production in layer's productivities by the recycling of organic waste resources such as food waste and agricultural by-products.

  • PDF

Optimization of Extraction Conditions of Antioxidant Activity and Bioactive Compounds from Rice Bran by Response Surface Methodology (반응표면분석법을 이용한 미강으로부터 항산화 활성 및 생리활성물질의 초음파 추출조건 최적화)

  • Gam, Da Hye;Jo, Jae Min;Jung, Hyun Jin;Kim, Jin Woo
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.726-733
    • /
    • 2018
  • The rice's waste byproduct is known as a rice bran and produced annually about 400,000 to 600,000 tons. Most of the rice bran are used as a livestock feed or waste disposal, and needed to be used to produce high-added substances, such as bioactive materials. In this study, extraction conditions of the ultrasound-assisted extraction (UAE) of the rice bran were optimized using a statistically-based optimization. The influence of extraction variables including the extraction time ($X_1$), extraction temperature ($X_2$) and ethanol concentration ($X_3$) were investigated using the response surface methodology in order to determine optimum extraction conditions which maximize total phenolic compounds (TPC), total flavonoid compounds (TFC) and electron donating abilities (EDA). The optimal UAE from rice bran was achieved under the extraction temperature of $94.9^{\circ}C$, extraction time of 41.6 minute and ethanol concentration of 74.0% (v/v) with maximum yields of TPC 2.78 mg GAE/g DM, TFC 1.63 mg QE/g DM and EDA 42.86%. The UAE process shows its potential to the extraction of bioactive and antioxidant compounds from rice bran in a short extraction time and low temperature. Also, it is proposed that rice bran could be considered as food additives and cosmeceutical products.

Degradation of Poultry Feathers by Bacillus amyloliquefaciens Y10 With Plant Growth-promoting Activity and Biological Activity of Feather Hydrolyzates (식물 성장 촉진 활성을 가진 Bacillus amyloliquefaciens Y10에 의한 가금 우모의 분해 및 생산된 우모 분해산물의 생리활성)

  • Yedam Kim;Young Seok Lee;Youngsuk Kim;Jinmyeong Song;Yeongbeen Bak;Gyulim Park;O-Mi Lee;Hong-Joo Son
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.304-312
    • /
    • 2024
  • This study was conducted to characterize strain Y10, isolated from discarded chicken feathers. Strain Y10 was identified as Bacillus amyloliquefaciens through phenotypic and 16S rRNA gene analysis. B. amyloliquefaciens Y10 exhibited plant growth-promoting activities, including the production of fungal cell-degrading enzymes (cellulase, lipase, protease, and pectinase), siderophores, ammonia, and indoleacetic acid. Furthermore, strain Y10 was able to inhibit the mycelial growth of several phytopathogenic fungi. When 0.1% sucrose as a carbon source and 0.05% casein as a nitrogen source were added to the basal medium, adjusted to pH 10, and cultured at 35℃, the degradation rate of chicken feathers by strain Y10 was about two times higher than that of the basal medium, with the feathers almost completely degraded in four days. Strain Y10 also degraded various keratin substrates, including duck feathers, wool, and human nails. It was confirmed that the feather hydrolyzates prepared using strain Y10 exhibited antioxidant activities, such as 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (EC50 = 0.38 mg/ml) and superoxide dismutase-like activity (EC50 = 183.7 mg/ml). These results suggest that B. amyloliquefaciens Y10 is a potential candidate for the development of bioinoculants and feed additives applicable to the agricultural and livestock industries, as well as the microbiological treatment of keratin waste.