• Title/Summary/Keyword: Liver steatosis

Search Result 160, Processing Time 0.026 seconds

Association between Transfusion-Related Iron Overload and Liver Fibrosis in Survivors of Pediatric Leukemia: A Cross-Sectional Study

  • Mahsa Sobhani;Naser Honar;Mohammadreza Fattahi;Sezaneh Haghpanah;Nader Shakibazad;Mohammadreza Bordbar
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.4
    • /
    • pp.215-223
    • /
    • 2024
  • Purpose: Patients who receive frequent blood transfusions are at an elevated risk of developing hepatic fibrosis due to iron overload in the liver. In this study, we evaluated the effectiveness of transient elastography (TE) (FibroScan®) for assessing liver fibrosis in patients with pediatric cancer. Methods: We enrolled 106 consecutive cases of acute leukemia in individuals under 21 years of age. The participants were followed for 2 years. Based on their serum ferritin (SF) levels, the patients were divided into two groups: group 1 (SF≥300 ng/mL) and group 2 (SF<300 ng/mL). A liver FibroScan® was performed, and a p-value of less than 0.05 was considered statistically significant. Results: Among the various parameters in the liver function test (LFT), alkaline phosphatase was significantly higher in a subgroup of patients aged 5-8 years in group 2 compared to those in group 1. The indices of liver fibrosis determined by TE, including the FibroScan score, controlled attenuation parameter score, steatosis percentage, and meta-analysis of histological data in viral hepatitis score, as well as indirect serum markers of liver fibrosis such as the aminotransferase (AST)/alanine aminotransferase (ALT) ratio, Fibrosis 4 score, and AST to platelet ratio index, did not differ significantly between the two groups. The association between the TE results and LFT parameters was only significant for ALT. Conclusion: Transfusion-associated iron overload does not have a significant correlation with severe liver fibrosis. FibroScan® is not a sensitive tool for detecting early stages of fibrosis in survivors of pediatric leukemia.

Ameliorative Effects of Pomegranate Peel Extract against Dietary-Induced Nonalcoholic Fatty Liver in Rats

  • Al-Shaaibi, Siham N.K.;Waly, Mostafa I.;Al-Subhi, Lyutha;Tageldin, Mohamed H.;Al-Balushi, Nada M.;Rahman, Mohammad Shafiur
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.14-23
    • /
    • 2016
  • Non-alcoholic fatty liver disease (NAFLD) is caused by fat accumulation and is associated with oxidative stress. In this study, we investigated the potential protective effect of pomegranate (Punica granatum L.) peel extract (PPE) against oxidative stress in the liver of rats with NAFLD. Sprague-Dawley rats were fed a high fat diet (HFD), 20% corn oil, or palm oil for 8 weeks in the presence or absence of PPE. The control group was fed a basal diet. The progression of NAFLD was evaluated histologically and by measuring liver enzymes (alanine transaminase and aspartate transaminase), serum lipids (triglycerides and total cholesterol), and oxidative stress markers. The HFD feeding increased the body weight and caused NAFLD, liver steatosis, hyperlipidemia, oxidative stress, and elevated liver enzymes. Administration of PPE ameliorated the hepatic morphology, reduced body weight, improved liver enzymes, and inhibited lipogenesis. Furthermore, PPE enhanced the cellular redox status in the liver tissue of rats with NAFLD. Our findings suggest that PPE could improve HFD-induced NAFLD via abolishment of hepatic oxidative damage and hyperlipidemia. PPE might be considered as a potential lead material in the treatment of NAFLD and obesity through the modulation of lipid metabolism.

Effects of Alcohol Consumption and Fat Content in Diet on Chemical Composition and Morphology of Liver in Rat (알콜과 식이지방량이 흰쥐의 간 지질조성과 간조직형태에 미치는 영향)

  • 정경희
    • Journal of Nutrition and Health
    • /
    • v.21 no.3
    • /
    • pp.154-163
    • /
    • 1988
  • Effects of alchohol and fat content in a balanced diet on chemical composition and morphology of liver were investigated in growing rats. Fourth eight male rats of Sprague-Dawley strain weighing about 160g were divided into 4 groups ; high fat diet group, alcohol-administered high fat diet group, low fat diet group and alcohol-administered high fat diet group, low fat diet group and alcohol-administered low fat diet group. High and low fat diets supplied 30% and 12%, respectively, of total calorie intake from fat, and alcohol was given by adding ethanol in drinking waster at 10%. Diets contained adequate amounts of all nutrients required for rats, including lipotrpoic agents(choline and methionine) to minimize effects of factors other than alcohol on liver damage. Ratios of liver weight to body weight were statistically different among groups. Liver/dody weight ratios alcohol-administered rats were significantly higher than those of non-alcohol groups after 6 weeks treatment. Although total lipid and triglyceride per gram liver were increased in alcohol-administered rats, especially low fat diet fed rats, the values were not significantly different. Opticmicroscopical observation revealed increase in cell size and no change in morphology of liver. Examination of hepatocytes by electron microscopy showed that fat droplets were observed in all groups but enlarged in the alcohol-administered low fat diet fed rat. Contents of protein, cholesterol and phospholipid were not affected by alcohol consumption. The level of lipid peroxide was significantly lower in the livers of alcohol-administered rats than in the livers of non-alcohol groups. The results of this study indicate that even moderate alcohol drinking and dietary fat content did not affect any significant change in composition and morphology of liver until 6 week treatment but that even moderate alcohol drinking caused some signs of steatosis of liver.

  • PDF

The hepato-protective effect of eupatilin on an alcoholic liver disease model of rats

  • Lee, Hak Yeong;Nam, Yoonjin;Choi, Won Seok;Kim, Tae Wook;Lee, Jaehwi;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.385-394
    • /
    • 2020
  • Eupatilin is known to possess anti-apoptotic, anti-oxidative, and anti-inflammatory properties. We report here that eupatilin has a protective effect on the ethanol-induced injury in rats. Sprague-Dawley rats were divided into 6 groups: control, vehicle, silymarin, eupatilin 10 mg/kg, eupatilin 30 mg/kg, and eupatilin 100 mg/kg. Plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were analyzed to determine the extent of liver damage. Total cholesterol (TC) and triglycerides (TG) were analyzed to determine the level of liver steatosis. Malondialdehyde level, superoxide dismutase (SOD) activity, and glutathione (GSH) level were analyzed to determine the extent of oxidative stress. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β were quantified to verify the degree of inflammation. Based on our findings, chronic alcohol treatment significantly changed the serum indexes and liver indicators of the model rats, which were significantly improved by eupatilin treatment. Rats in the eupatilin-treatment group showed reduced levels of AST, ALT, TG, TC, TNF-α, and IL-1β, increased SOD activity and GSH levels, and improved overall physiology compared to the alcoholic liver disease model rats. H&E staining also verified the eupatilin-mediated improvement in liver injury. In conclusion, eupatilin inhibits alcohol-induced liver injury via its antioxidant and anti-inflammatory effects.

Investigation of Thiol/Disulfide Balance in Obese Rats with Non-Alcoholic Fatty Liver Disease

  • Tursun, Serkan;Gulerman, Hacer Fulya;Gazyagci, Serkal;Sahin, Yasar;Erel, Ozcan;Neselioglu, Salim
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.5
    • /
    • pp.443-454
    • /
    • 2021
  • Purpose: Due to the increasing prevalence of obesity worldwide, non-alcoholic fatty liver disease (NAFLD) has reached epidemic dimensions over time. NAFLD is the most common cause of childhood chronic liver disease. There is a relationship between NAFLD and oxidative stress. This study aims to investigate the changes in thiol/disulfide homeostasis parameters to determine the oxidant/antioxidant balance in obese rats with diet-induced NAFLD and healthy rats. Methods: Twelve Wistar albino rats were used in this study. Experimentally produced NAFLD obese rats (n=6) and healthy rats were compared. Experimental NAFLD model was created with a special fatty liver diet (Altromin® C1063, Fatty Liver Diet, Exclusivet, Lage, Germany). The biochemical and histopathological features of the groups, as well as serum thiol/disulfide homeostasis parameters, were analyzed and compared. Results: In the experimentally induced NAFLD rat model, they gained more weight than the control group. Steatosis (at least grade 2) occurred in all rats fed with special fatty liver diet for 12 weeks. Histopathologically, no high-grade inflammation was observed in rats with experimental NAFLD after feeding a diet for 12 weeks. Results revealed that aspartate transaminase and alanine transaminase levels were high, albumin levels were low, oxidant stress parameters increased, and antioxidant thiol groups decreased. Conclusion: Experimental NAFLD is characterized by increased oxidant stress accompanying fatty tissue in the liver. Analysis of thiol/disulfide homeostasis parameters in NAFLD can be used in further studies to develop effective treatment options.

Porphyromonas gingivalis exacerbates the progression of fatty liver disease via CD36-PPARγ pathway

  • Ahn, Ji-Su;Yang, Ji Won;Oh, Su-Jeong;Shin, Ye Young;Kang, Min-Jung;Park, Hae Ryoun;Seo, Yoojin;Kim, Hyung-Sik
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.323-328
    • /
    • 2021
  • Periodontal diseases have been reported to have a multidirectional association with metabolic disorders. We sought to investigate the correlation between periodontitis and diabetes or fatty liver disease using HFD-fed obese mice inoculated with P. gingivalis. Body weight, alveolar bone loss, serological biochemistry, and glucose level were determined to evaluate the pathophysiology of periodontitis and diabetes. For the evaluation of fatty liver disease, hepatic nonalcoholic steatohepatitis (NASH) was assessed by scoring steatosis, inflammation, hepatocyte ballooning and the crucial signaling pathways involved in liver metabolism were analyzed. The C-reactive protein (CRP) level and NASH score in P. gingivalis-infected obese mice were significantly elevated. Particularly, the extensive lobular inflammation was observed in the liver of obese mice infected with P. gingivalis. Moreover, the expression of metabolic regulatory factors, including peroxisome proliferator-activated receptor γ (Pparγ) and the fatty acid transporter Cd36, was up-regulated in the liver of P. gingivalis-infected obese mice. However, inoculation of P. gingivalis had no significant influence on glucose homeostasis, insulin resistance, and hepatic mTOR/AMPK signaling. In conclusion, our results indicate that P. gingivalis can induce the progression of fatty liver disease in HFD-fed mice through the upregulation of CD36-PPARγ axis.

Correlation between Transient Elastography (Fibroscan®) and Ultrasonographic and Computed Tomographic Grading in Pediatric Nonalcoholic Steatohepatitis

  • Lee, Ji Eun;Ko, Kyung Ok;Lim, Jae Woo;Cheon, Eun Jung;Song, Young Hwa;Yoon, Jung Min
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.3
    • /
    • pp.240-250
    • /
    • 2022
  • Purpose: This study aimed to examine the advantages and usefulness of transient elastography (Fibroscan®) in diagnosing non-alcoholic steatohepatitis in children and adolescents compared to those of abdominal computed tomography and liver ultrasonography. Methods: Forty-six children and adolescent participants aged between 6 and 16 years who underwent transient elastography (Fibroscan®) as well as liver ultrasonography or abdominal computed tomography were included. Thirty-nine participants underwent liver ultrasonography and 11 underwent computed tomography. The physical measurements, blood test results, presence of metabolic syndrome, and the degree of liver steatosis and liver fibrosis were analyzed, and their correlations with transient elastography (Fibroscan®), abdominal computed tomography, and liver ultrasonography, as well as the correlations between examinations, were analyzed. Results: Thirty-six participants (78.3%) were boys, and the mean age was 12.29±2.57 years, with a mean body mass index of 27.88±4.28. In the 46 participants, the mean values for aspartate aminotransferase, alanine aminotransferase, and total bilirubin were 89.87±118.69 IU/L, 138.54±141.79 IU/L, and 0.77±0.61 mg/dL, respectively. Although transient elastography (Fibroscan®) and abdominal computed tomography grading had a statistically significant positive correlation with aspartate aminotransferase and alanine aminotransferase values, the correlations between the results of grading performed by transient elastography (Fibroscan®), abdominal computed tomography, and liver ultrasonography were not statistically. Conclusion: We confirmed that each examination was correlated with the results of some blood tests, suggesting the usefulness and possibility of diagnosis and treatment of steatohepatitis mediated by transient elastography (Fibroscan®) in the department of pediatrics.

Ameliorating Effects of Lactic Acid-fermented Garlic Extracts on Oleic Acid-induced Hepatic Steatosis (유산균 발효 마늘 추출물의 oleic acid로 유도된 비알코올성 지방간에 대한 개선 효과)

  • Lee, Hee-Seop;Lim, Won-Chul;Choi, Ji-Hwi;Yu, Heui-Jong;Kim, Ki-Ho;Lee, Seung-Hyun;Cho, Hong-Yon
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.762-768
    • /
    • 2014
  • In this study, the ameliorating effects of lactic acid-fermented garlic extract (LAFGE) on non-alcoholic fatty liver were investigated using oleic acid-induced steatotic HepG2 cells. The ameliorating mechanism was analyzed by RT-PCR and Western blot. Treatment with 1 mg/mL LAFGE decreased intracellular lipid accumulation approximately 1.5-fold, compared to that achieved with non-fermented garlic extract. LAFGE reduced fatty acid influx into hepatocytes through down-regulation of FAT/CD36 mRNA expression in the steatotic HepG2 cells. $PPAR{\alpha}$ and CPT-1 mRNA expression was significantly up-regulated by LAFGE treatment of HepG2 cells as a consequence of activation of beta oxidation. Additionally, the treatment with 1 mg/mL LAFGE highly down-regulated mRNA expression of SREBP-1c and FAS to 51% and 35%, respectively. LAFGE showed concentration-dependent down-regulation patterns in protein expression of SREBP-1c and FAS, as determined by Western blot. These results suggest that LAFGE treatment improves hepatic steatosis triggered by the imbalance of hepatic lipid metabolism owing to oleic acid treatment.

Genome-wide hepatic DNA methylation changes in high-fat diet-induced obese mice

  • Yoon, AhRam;Tammen, Stephanie A.;Park, Soyoung;Han, Sung Nim;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: A high-fat diet (HFD) induces obesity, which is a major risk factor for cardiovascular disease and cancer, while a calorie-restricted diet can extend life span by reducing the risk of these diseases. It is known that health effects of diet are partially conveyed through epigenetic mechanism including DNA methylation. In this study, we investigated the genome-wide hepatic DNA methylation to identify the epigenetic effects of HFD-induced obesity. MATERIALS AND METHODS: Seven-week-old male C57BL/6 mice were fed control diet (CD), calorie-restricted control diet (CRCD), or HFD for 16 weeks (after one week of acclimation to the control diet). Food intake, body weight, and liver weight were measured. Hepatic triacylglycerol and cholesterol levels were determined using enzymatic colorimetric methods. Changes in genome-wide DNA methylation were determined by a DNA methylation microarray method combined with methylated DNA immunoprecipitation. The level of transcription of individual genes was measured by real-time PCR. RESULTS: The DNA methylation statuses of genes in biological networks related to lipid metabolism and hepatic steatosis were influenced by HFD-induced obesity. In HFD group, a proinflammatory Casp1 (Caspase 1) gene had hypomethylated CpG sites at the 1.5-kb upstream region of its transcription start site (TSS), and its mRNA level was higher compared with that in CD group. Additionally, an energy metabolism-associated gene Ndufb9 (NADH dehydrogenase 1 beta subcomplex 9) in HFD group had hypermethylated CpG sites at the 2.6-kb downstream region of its TSS, and its mRNA level was lower compared with that in CRCD group. CONCLUSIONS: HFD alters DNA methylation profiles in genes associated with liver lipid metabolism and hepatic steatosis. The methylation statuses of Casp1 and Ndufb9 were particularly influenced by the HFD. The expression of these genes in HFD differed significantly compared with CD and CRCD, respectively, suggesting that the expressions of Casp1 and Ndufb9 in liver were regulated by their methylation statuses.

Fermented ginseng, GBCK25, ameliorates steatosis and inflammation in nonalcoholic steatohepatitis model

  • Choi, Naeun;Kim, Jong Won;Jeong, Hyeneui;Shin, Dong Gue;Seo, Jeong Hun;Kim, Jong Hoon;Lim, Chae Woong;Han, Kang Min;Kim, Bumseok
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.196-208
    • /
    • 2019
  • Background: Nonalcoholic steatohepatitis (NASH) is one of the chronic inflammatory liver diseases and a leading cause of advanced liver fibrosis, cirrhosis, and hepatocellular carcinoma. The main purpose of this study was to clarify the effects of GBCK25 fermented by Saccharomyces servazzii GB-07 and pectinase, on NASH severity in mice. Methods: Six-wk-old male mice were fed either a normal diet (ND) or a Western diet (WD) for 12 wks to induce NASH. Each group was orally administered with vehicle or GBCK25 once daily at a dose of 10 mg/kg, 20 mg/kg, 100 mg/kg, 200 mg/kg, or 400 mg/kg during that time. The effects of GBCK25 on cellular damage and inflammation were determined by in vitro experiments. Results: Histopathologic analysis and hepatic/serum biochemical levels revealed that WD-fed mice showed severe steatosis and liver injury compared to ND-fed mice. Such lesions were significantly decreased in the livers of WD-fed mice with GBCK25 administration. Consistently, mRNA expression levels of NASH-related inflammatory-, fibrogenic-, and lipid metabolism-related genes were decreased in the livers of WD-fed mice administered with GBCK25 compared to WD-fed mice. Western blot analysis revealed decreased protein levels of cytochrome P450 2E1 (CYP2E1) with concomitantly reduced activation of c-Jun N-terminal kinase (JNK) in the livers of WD-fed mice administered with GBCK25. Also, decreased cellular damage and inflammation were observed in alpha mouse liver 12 (AML12) cells and RAW264.7 cells, respectively. Conclusion: Administration of GBCK25 ameliorates NASH severity through the modulation of CYP2E1 and its associated JNK-mediated cellular damage. GBCK25 could be a potentially effective prophylactic strategy to prevent metabolic diseases including NASH.