• Title/Summary/Keyword: Live Vaccines

Search Result 74, Processing Time 0.022 seconds

Analysis of Integrity of Killed Hantavirus Vaccine by Antigen-Capture Reverse Transcriptase PCR

  • HWANG KYUNG-A;JOO YOUNG-RAN;SHIN YOUNG-HAK;PARK KEUN-YONG;NAM JAE-HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1384-1387
    • /
    • 2005
  • Hantavax(R) is one of the killed Hantavirus vaccines, and is commercially available in South Korea. This vaccine was developed by inactivation of virus isolated from infected suckling mouse brain with formalin. Although Hantavax(R) can induce neutralizing antibodies in vaccinees, the strength of this induction and the duration of the humoral immune response are controversial issues. In this study, we studied the native conformation of the killed vaccine by antigen-capture reverse transcriptase polymerase chain reaction with patient and vaccinee sera containing neutralizing antibodies against Hantavirus. The results showed that Hantavax(R) could bind HTNV patient and vaccinee sera like live virus, suggesting that the integrity of the viral epitope is maintained in Hantavax(R) and induces the protective antibodies, even though the virus was inactivated with formalin.

Prevention Strategies for Viral Nervous Necrosis (VNN) in Sevenband Grouper Epinephelus septemfasciatus Aquaculture Farms (능성어(Epinephelus septemfasciatus) 양식장에서의 바이러스성신경괴사증(VNN) 예방대책)

  • Kim, Wi-Sik;Kim, Jong-Oh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.403-410
    • /
    • 2015
  • Viral nervous necrosis (VNN) is a serious disease of sevenband grouper Epinephelus septemfasciatus in Korean aquaculture farms. However, we suggest the following preventative methods for hatcheries: 1) disinfecting rearing water, 2) selecting spawners via ELISA and PCR, 3) selecting eggs via PCR, 4) disinfecting fertilized eggs, and 5) proper facilities management. When these methods are implemented, nervous necrosis virus (NNV)-free fish are produced because vertical and horizontal transmission is prevented. However, horizontal transmission of NNV through rearing seawater sourced from the environment during grow-out stages in sea cages can still occur. Live NNV vaccines with a low rearing temperature or Poly(I:C) immunization are very effective at preventing horizontal transmission of NNV in rearing farms. Furthermore, even after VNN is contracted, fish mortality can be reduced by administering Poly(I:C).

Sublingual Delivery of Vaccines for the Induction of Mucosal Immunity

  • Shim, Byoung-Shik;Choi, Youngjoo;Cheon, In Su;Song, Man Ki
    • IMMUNE NETWORK
    • /
    • v.13 no.3
    • /
    • pp.81-85
    • /
    • 2013
  • The mucosal surfaces are constantly exposed to incoming pathogens which can cause infections that result in severe morbidity and/or mortality. Studies have reported that mucosal immunity is important for providing protection against these pathogens and that mucosal vaccination is effective in preventing local infections. For many years, the sublingual mucosa has been targeted to deliver immunotherapy to treat allergic hypersensitivities. However, the potential of vaccine delivery via sublingual mucosal has received little attention until recently. Recent studies exploring such potential have documented the safety and effectiveness of sublingual immunization, demonstrating the ability of sublingual immunization to induce both systemic and mucosal immune responses against a variety of antigens, including soluble proteins, inter particulate antigens, and live-attenuated viruses. This review will summarize the recent findings that address the promising potential of sublingual immunization in proving protection against various mucosal pathogens.

Update in varicella vaccination (수두백신의 최신지견)

  • Oh, Sung Hee
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.3
    • /
    • pp.229-234
    • /
    • 2006
  • Varicella, which is mostly a benign disease, but also can cause considerable health burden in the community, can be prevented by immunization with live attenuated varicella vaccine. Higher uptake of varicella vaccine by universal immunization in North America has apparently been associated with decline in the number of reported cases of varicella, varicella-related hospitalizations, and the number of deaths caused by complications of varicella. On the contrary, there has been some reluctance in endorsing varicella vaccine for universal immunization in most of European countries. Concerns include unanticipated outbreaks of varicella among vaccine recipients, risk of varicella among unvaccinated adults, risk of herpes zoster among vaccinees as well as unvaccinees. Recently developed measles, mumps, rubella, and varicella combination vaccine and herpes zoster vaccine that may be licensed in the upcoming years may be the solution for varicella vaccine to be utilized in a greater scale. In Korea several varicella vaccine products have been utilized since late 1980. The adoption of varicella vaccine for universal immunization since 2005 along with the changing view in varicella prevention strategy mandates more studies for immunogenecity and efficacy of varicella vaccines as well as more surveillance to delineate the changes in epidemiology of varicella in Korea.

Production of Newcastle vaccine using continuous mammalian cells

  • Gwak, Il-Yeong;Choe, Yeon-Suk;Jeong, Yeon-Ho;Jeon, Gye-Taek;Kim, Ik-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.281-284
    • /
    • 2002
  • Specific pathogen free (SPF) eggs have been used to produce live vaccines. however, their application causes many problems such as cost, space and waste disposal. The substitution of mammalian cells for SPF eggs offers a desirable system of vaccine production. In this study, mammalian cells were tested for the infection of Newcastle disease virus (NDV). As a result, DF-I and MDBK cells showed high virus productivity compared to the other mammalian cells. For the highest productivity of NDV, the optimal multiplicity of infection (M.O.I.) in DF-I or MDBK cells was determined to be 0.2 or 0.5 M.O.I., respectively.

  • PDF

Oxidized Carbon Nanosphere-Based Subunit Vaccine Delivery System Elicited Robust Th1 and Cytotoxic T Cell Responses

  • Sawutdeechaikul, Pritsana;Cia, Felipe;Bancroft, Gregory J.;Wanichwecharungruang, Supason;Sittplangkoo, Chutamath;Palaga, Tanapat
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.489-499
    • /
    • 2019
  • Subunit vaccines are safer and more stable than live vaccines although they have the disadvantage of eliciting poor immune response. To develop a subunit vaccine, an effective delivery system targeting the key elements of the protective immune response is a prerequisite. In this study, oxidized carbon nanospheres (OCNs) were used as a subunit vaccine delivery system and tuberculosis (TB) was chosen as a model disease. TB is among the deadliest infectious diseases worldwide and an effective vaccine is urgently needed. The ability of OCNs to deliver recombinant Mycobacterium tuberculosis (Mtb) proteins, Ag85B and HspX, into bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs) was investigated. For immunization, OCNs were mixed with the two TB antigens as well as the adjuvant monophosphoryl lipid A (MPL). The protective efficacy was analyzed in vaccinated mice by aerosol Mtb challenge with a virulent strain of Mtb and the bacterial burdens were measured. The results showed that OCNs are highly effective in delivering Mtb proteins into the cytosol of BMDMs and BMDCs. Upon immunization, this vaccine formula induced robust Th1 immune response characterized by cytokine profiles from restimulated splenocytes and specific antibody titer. More importantly, enhanced cytotoxic $CD8^+$ T cell activation was observed. However, it did not reduce the bacteria burden in the lung and spleen from the aerosol Mtb challenge. Taken together, OCNs are highly effective in delivering subunit protein vaccine and induce robust Th1 and $CD8^+$ T cell response. This vaccine delivery system is suitable for application in settings where cell-mediated immune response is needed.

HIV-1 Vaccine Development: Need For New Directions

  • Cho Michael W.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.78-82
    • /
    • 2000
  • The AIDS epidemic continues unabated in many part of the world. After near two decades, no vaccine is available to combat the spread of this deadly disease. Much of the HIV -1 vaccine effort during the past decade has focused on the viral envelope glycoprotein, largely because it is the only protein that can elicit neutralizing antibodies (Nabs). Eliciting broadly cross-reactive Nabs has been a primary goal. The intrinsic genetic diversity of the viral envelope, however, has been one of the major impediments in vaccine development. We have recently completed a comprehensive study examining whether it is possible to elicit broadly acting Nabs by immunizing monkeys with mixtures of envelope proteins from multiple HIV -1 isolates. We compared the humoral immune responses elicited by vaccination with either single or multiple envelope proteins and evaluated the importance of humoral and non-humoral immune response in protection against a challenge virus with a homologous or heterologous envelope protein. Our results show that (1) Nab is the correlate of sterilizing immunity, (2) Nabs against primary HIV -1 isolates can be elicited by the live vector-prime/protein boost approach, and (3) polyvalent envelope vaccines elicit broader Nab response than monovalent vaccines. Nonetheless, our findings clearly indicate that the increased breadth of Nab response is by and large limited to strains included in the vaccine mixture and does not extend to heterologous non-vaccine strains. Our study strongly demonstrates how difficult it may be to elicit broadly reactive Nabs using envelope proteins and sadly predicts a similar fate for many of the vaccine candidates currently being evaluated in clinical trials. We have started to evaluate other vaccine candidates (e.g. genetically modified envelope proteins) that might elicit broadly reactive Nabs. We are also exploring other vaccine strategies to elicit potent cytotoxic T lymphocyte responses. Preliminary results from some of these experiments will be discussed.

  • PDF

Recent Advances in the Prevention of RSV in Neonates and Young Infants

  • Ki Wook Yun
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Respiratory syncytial virus (RSV) is a pathogen with a high burden of disease and social cost among infants worldwide, but the development of a vaccine has been delayed. The recent understanding of the pathogenesis of RSV, progress in reverse genetics, and successful implementation of other maternal immunizations have prompted the recent rapid development of monoclonal antibodies (mAbs) and vaccines for RSV prevention. Phase 3 clinical trials for two next-generation mAbs (nirsevimab and clesrovimab) and two maternal RSV pre-F vaccines are currently underway or have been recently completed. Soon, we might be able to protect young infants through long-acting mAbs and/or maternal immunization. Additionally, the development of live-attenuated vaccine candidates that are capable of avoiding enhanced RSV disease is ongoing. We need to gain familiarity with these newly developed strategies and collect epidemiological data on domestic RSV to adequately prepare for a new era of RSV prevention.

Immunization Practices in Children with Renal Disease : A Survey of the Members of Korean Society of Pediatric Nephrology (신질환 소아의 예방접종 현황 : 대한소아신장학회 회원들의 접종 방식에 대한 조사)

  • Park Seong-Shik;Ahn Sung-Ryou;Lee Ju-Suk;Kim Su-Yung
    • Childhood Kidney Diseases
    • /
    • v.6 no.2
    • /
    • pp.198-208
    • /
    • 2002
  • Purpose : There is no scientific basis for an immunization policy for children with renal disease who have increased risk of infection in Korea. As an initial step in approaching this problem, this survey of pediatric nephrologists was undertaken to determine the current recommendations of practicing pediatric nephrologists Methods : Questionnaires were sent to the members of Korean Society of Pediatric Nephrology via mail and E-mail. The questionnaire was designed to obtain information about the immunization practice of basic vaccination schedule for nephrotic syndrome, the side effects after vaccination and the immunization practice about recommended vaccines for children with renal disease. Results : Questionnaires were sent to 56 pediatric nephrologists. 35 replies were received (response rate: 62.5%). Almost of the respondents (82.8%) reported practicing at university hospital. All respondents reported modified vaccination schedule. 65.7% of the respondents immunized nephrotic children with live vaccines some time later after discontinuation of corticosteroids treatment and 57.1% of respondents immunized them with killed vaccines during medication of low doses of corticosteroids. Respondents experienced relapse of nephrotic syndrome after vaccination are nine, lack of vaccine efficacy are three and infection by organisms of live vaccines are two. 71.4% of respondents reported vaccinating children with renal disease for hepatitis B, pneumococcus and influenza during medication of low doses of corticosteroids. But There is few difference of the rates of respondents vaccinating them for Hemophilus influenzae type b between during medication of low doses of corticosteroids and after discontinuation of corticosteroids treatment (45.7% us 42.9%). Almost of respondents reported vaccinating renal failure children without immunosuppression for hepatitis B, pneumococcus, influenza and H. influenzae type b ($54.3{\sim}77.1%$). Conclusion : Pediatric nephrologists practiced modifying vaccination schedules for children with renal disease in Korea and there was variation according to the progression of disease and the doses of corticosteroids. It is necessary to establish the immunization guideline for children with renal disease through the prospective studies.

  • PDF

Evaluation of the efficacy of an attenuated live vaccine based on virulent porcine reproductive and respiratory syndrome virus 2 in young pigs

  • Lee, Seung-Chul;Noh, Yun-Hee;Lee, Sunhee;Choi, Hwan-Won;Yoon, In-Joong;Kang, Shien-Young;Lee, Changhee
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.3
    • /
    • pp.137-141
    • /
    • 2018
  • The efficacy of the CA-2-MP120 vaccine, a cell culture-attenuated strain of virulent porcine reproductive and respiratory syndrome virus (PRRSV), was assessed in pigs. Despite the persistence of viremia in all vaccinated animals during the immunization period, the virus was not detected in vaccinated pigs following challenge. Furthermore, no pigs in the vaccinated group shed PRRSV nasally, orally or rectally throughout the experiment. Moreover, histopathological lung and lymph node lesions in the immunized group were much milder than those in the unimmunized and challenged group. These results indicated that CA-2-MP120 can provide effective protection against virulent wild-type PRRSV-2.