• Title/Summary/Keyword: Litter layer

Search Result 95, Processing Time 0.026 seconds

Forest Stand Structure, Site Characteristics and Carbon Budget of the Kwangneung Natural Forest in Korea (광릉 활엽수천연림의 산림식생구조, 입지환경 및 탄소저장량)

  • Jong-Hwan Lim;Joon Hwan Shin;Guang Ze Jin;Jung Hwa Chun;Jeong Soo Oh
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.101-109
    • /
    • 2003
  • The study area, Kwangneung Experiment Forest (KEF) is located on the west-central portion of Korean peninsula and belongs to a cool-temperate broadleaved forest Bone. At the old-growth deciduous forest near Soribong-peak (533.1 m) in KEF, we have established a 1 ha permanent plot ($100m{\times}100m$) and a flux tower, and the site was registered as a KLTER(Korean long-term ecological research network) and DK site of KoFlux. In this site, we made a stemmap of trees and analyzed forest stand structure and physical and chemical soil characteristics, and estimated carbon budgets by forest components (tree biomass, soils, litter and so on). Dominant tree species were Quercus serrata and Carpinus laxiflora, and accompanied by Q. aliena, Carpinus cordata, and so on. As a result of a field survey of the plot, density of the trees larger than 2 cm in DBH was 1,473 trees per ha, total biomass 261.2 tons/ha, and basal area $28.0m^2$/ha. Parent rock type is granite gneiss. Soil type is brown forest soil (alfisols in USDA system), and the depth is from 38 to 66 cm. Soil texture is loam or sandy loam, and its pH was f개m 4.2 to 5.0 in the surface layer, and from 4.8 to 5.2 in the subsurface layer. Seasonal changes in LAI were measured by hemispherical photography at the 1.2 m height, and the maximum was 3.65. And the spatial distributions of volumetric soil moisture contents and LAIs of the plot were measured. The carbon pool in living tree biomass including below ground biomass was 136 tons C/ha, and 5.6 tons C/ha is stored in the litter layer, and about 92.0 tons C/ha in the soil to the 30 cm in depth. Totally more than about 233.6 tons C/ha was stored in DK site. These ground survey and monitoring data will give some important parameters and validation data for the forest dynamics models or biogeochemical dynamics models to predict or interpolate spatially the changes in forest ecosystem structure and function.

Community Analysis of Oribatid Mites(Acari: Oribatida) in Namsan and Kwangreung Coniferous Forests (남산과 광릉 침엽수림의 날개응애 군집분석)

  • 박홍현;이준호
    • Korean journal of applied entomology
    • /
    • v.39 no.1
    • /
    • pp.31-41
    • /
    • 2000
  • Community analysis of oribatid mites was conducted in Namsan and Kwangreung coniferous forests which have been received by different degrees of environmental pressures through urbanization processes. Oribatid mites were sampled in the litter and soil layer of study sites from May 1993 to October 1994. Although two sites have been under similar weather condition, seasonal changes in oribatid mites density did not show a synchronized pattern. Density in spring and summer showed stable pattern with low fluctuations, but unstable pattern in autumn between 1993 and 1994. And these patterns were highly correlated with precipitation. The density and species number were higher in the litter layer than in the soil layer and showed no typical seasonal changes. The dominant species were Scheloribates latipes (1 l.78%), Pergalumna altera (8.92%), Eohypochthonius crassisetiger (7.58%), Scheloribates sp. (6.89%) and Suctobelbella yezoensis (5.04%) in Namsan, and Ceratozetes japonicus (25.72%), Punctoribates punctum (14.15%), Trichogalumna nipponica (10.96%) and Ramusella sengbuschi (5.08%) in Kwangreung. The number of species with high constany were 10 and 18 in Namsan and Kwangreung, respectively. Namsan showed the feature of urban forests. In analysis of species diversity, species richness was significantly higher in Kwangreung than in Namsan, while shannon (H') and evenness index (J') were higher in Namsan than in Kwangreung. The values of shannon index (H') in Namsan and Kwangreugn were 2.83 and 2.62, respectively and evenness index (J') were 0.78 and 0.67, respectively. The value of similarity index between two sites was 0.68.

  • PDF

Soil Microarthropods Fauna at the Namsan and Kwangreung (남산과 광릉의 토양 미소절지동물에 관한 연구)

  • Park, Hong-Hyun;Jung, Chul-Eui;Lee, Joon-Ho;Lee, Byum-Yung
    • The Korean Journal of Soil Zoology
    • /
    • v.1 no.1
    • /
    • pp.37-47
    • /
    • 1996
  • This research was carried out to investigate soil mictoarthropods fauna in Namsan and Kwangreung which were considered to receive different degreeds of environmental pressures. In basic environmental data, Namsan where under rather accelerated acidification by air contamination and acidic rain showed low pH, tardy decomposition and turnover rate. Population density of soil microarthropods was high in Kwangreung 17,169.8/\ulcorner\ulcorner(coniferous forests), 17,892.6/$\textrm{m}^2$(deciduous forests) than in Namsan, 12,143.8/$\textrm{m}^2$ (coniferous forests), 14,216$\textrm{m}^2$(deciduous forests). Biomass of soil microarthropods was 2,020.219mg/$\textrm{m}^2$ at coniferous forests and 4,270.172mg/$\textrm{m}^2$ at deciduous forests in Namsan, and 3,287.326mg/$\textrm{m}^2$ at coniferous forests and 4326.1mg/$\textrm{m}^2$ at deciduous forests in Kwangreung. Population density constantly showed high in spring, and seasonal fluctuations were correlated with seasonal precipitation. As far as vertical distribution is concerned, population density was concentrated in litter layer as 70% while 30% are in soil layer and also decreased with increasing depth.

  • PDF

Phylogenetic characterization of bacterial populations in different layers of oak forest soil (상수리나무림의 토양 층위별 세균군집의 계통학적 특성)

  • Han, Song-Ih
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.133-140
    • /
    • 2015
  • We have examined the correlation between the physicochemical and microbiological environment variables for the different layers of oak forest soil in Mt. Gyeryong, Korea. The result shows that there is a high correlation in the environment variables between the soil parameters of the fermented (F) layer and humus (H) layer. In particular, the pH level in the F layer shows a high correlation with C and N, while the various organic acids of the H layer turns out to be closely correlated with soil bacteria density. As we evaluated phylogenetic characteristics of bacterial populations by DGGE analysis with DNA extracted. Total of 175 bands including 43 bands from litter (L) layer, 42 bands from F layer, 43 bands from H layer and 47 bands from rhizosphere (A) layer were selected as the major DGGE band of oak forest soil. Based on the 16S rRNA gene sequences, 175 DGGE bands were classified into 32 orders in 7 phylum. The heat map was analyzed in order to compare the quantity of the base sequences of each order and based on the clustering of the different layers of oak forest soil, the result confirms that the F layer and H layer belong to a different cluster from that of L layer and A layer. Furthermore, it also showed that approximately 50% of the total microbial population in different layers is ${\alpha}$-proteobacteria, which indicates that they belong to the dominant system group. In particular, Rhizobiales, Burkholderiales and Actinobacteriales were observed in all the seasons and layers of oak forest soil, which confirms that they are the indigenous soil bacterial community in oak forest soil.

Comparison of Carbon Storage between Forest Restoration of Abandoned Coal Mine and Natural Vegetation Lands (폐탄광 산림복원지와 자연식생지의 탄소저장량 비교)

  • Kim, So-Jin;Jung, Yu-Gyeong;Park, Ki-Hyung;Kim, Ju-Eun;Bae, Jeong-Hyeon;Kang, Won-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.5
    • /
    • pp.33-46
    • /
    • 2023
  • In this study, carbon storage in the aboveground biomass, litter layer, and soil layer was calculated for abandoned mining restoration areas to determine the level of carbon storage after the restoration project through comparison with the ecological reference. Five survey sites were selected for each abandoned mining restoration area in Boryeong-si, Chungcheongnam-do, and the ecological reference that can be a goal and model for the restoration project. The carbon storage in the restoration area was 0~21.3Mg C ha-1, the deciduous layer 3.3~6.0Mg C ha-1, and the soil layer(0-30cm) 8.3~35.1Mg C ha-1, showing a significant difference in carbon storage by target site. The total carbon storage was between 6.1 and 35.3% of the ecological reference, with restoration area ranging from 14.0 to 62.4 Mg C ha-1. The total carbon storage in the restoration area and the ecological reference differed the most in the aboveground biomass and was less than 12%. Based on these results, forest restoration area need to improve the carbon storage of forests through continuous management and monitoring so trees can grow and restore productivity in the early stages of the restoration project. The results of this study can be used as primary data for preparing future forest restoration indicators by identifying the storage of abandoned mining restoration areas.

Enhancing Arthropod Pitfall Trapping Efficacy with Quinone Sulfate: A Faunistic Study in Gwangneung Forest

  • Tae-Sung Kwon;Young Kyu Park;Dae-Seong Lee;Da-Yeong Lee;Dong-Won Shim;Su-Jin Kim;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.303-319
    • /
    • 2023
  • Pitfall traps that use ethylene glycol as a preservative solution are commonly used in arthropod research. However, a recent surge in cases involving damage to these traps by roe deer or wild boars owing to the sweet taste of ethylene glycol has prompted the addition of quinone sulfate, a substance with a pungent taste, to deter such wildlife interference. This study aimed to assess the effects of quinone sulfate on arthropods collected from pitfall traps containing ethylene glycol. We strategically positioned 50 traps using ethylene glycol alone and 50 traps containing a small amount of quinone sulfate mixed with ethylene glycol in a grid pattern for systematic sampling at the Gwangneung Forest long-term ecological research (LTER) site. Traps were collected 10 days later. The results revealed a notable effect on ants when quinone sulfate was introduced. Specifically, it decreased the number of ants. In a species-specific analysis of ants, only Nylanderia flavipes showed a significant decline in response to quinone sulfate, whereas other ant species remained unaffected. Additionally, among the arthropod samples obtained in this survey, we identified species or morpho-species of spiders, beetles, and ants and assessed species diversity. Consequently, the utilization of quinone sulfate should be undertaken judiciously, taking into account the specific species composition and environmental characteristics of the monitoring site. Our study also highlighted the significant response of various arthropod groups to variations in leaf litter depth, underscoring the crucial role of the leaf litter layer in providing sustenance and shelter for ground-foraging arthropods. Furthermore, we have compiled comprehensive species lists of both spiders and ants in Gwangneung forest by amalgamating data from this investigation with findings from previous studies.

The Study on Experimental Method of Smoldering Ground Fire in Forest Fire (뒷불 특성에 관한 실험방법 연구)

  • Kim, Dong-Hyun;Kim, Jang-Hwan;Kim, Eung-Sik
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • A smoldering ground fire can be a probable cause of reignition of surface fire when transmitted from Fermentation layer to Humus layer with temperature higher than that of ignition. Purpose of this paper is to identify experimental methodology on the potential risk of a smoldering ground fire, which is similar to the real surface fuel bed, and its combustion characteristics. The fuel model designed in this study is composed of 3 layers such as Litter layer, Fermentation layer and Humus layer and 8 Thermocouples are set through 3 layer at each boundary and in between to detect the temperature change and duration of smoldering and propagation velocity. As a result, it was observed that ignition conditions in the boundary between L layer and F layer determined transmission and non-transmisstion to F-H layer. In addition, range of critical humidity at which a smoldering ground fire was transmitted in a material layer was 33~44% and when temperature exceeds $350^{\circ}C$, likelihood of transmission of a smoldering ground fire was high. In the research, the experimental model for multi-layer smoldering ground fire is suggested and information about propagation of smoldering fire, possibility of reignition according to moisture content, propagation velocity and temperature change are obtained, Also, the built-up methods were established to help analyze basic characteristics of smoldering ground fire.

The Pseudoscorpion FamilyChthoniidae(Arachnida: Pseudoscorpionida) in Korea, with Two New Species from the Genus Tyrannochthonius (한국산 꼬마앉은뱅이과(거미강: 앉은뱅이목)의 분류)

  • Yong Hong;Kim, Tae-Heung;Lee, Won-Koo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.12 no.2
    • /
    • pp.173-184
    • /
    • 1996
  • As a result of this report, the pseudoscorpion family Chthoniidae in Korea comprises nine species in four genera. All species are collected mainly from the litter layer in wooded forests. The two new species, Tyrannochthonius suppressalis n. sp. and Tyrannochthonius spinatus n. sp., described herein occur on islands in the Yellow Sea.

  • PDF

Stability Analysis of Soil Oribatid Mite Communities (Acari: Oribatida from Namsan and Kwangreung Deciduous Forests, Korea

  • Jung, Chulue;Lee, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.239-243
    • /
    • 2001
  • One of the most important justifications of conservation of ecosystem and biodiversity is that diversity begets stability. Impact of biodiversity on community and ecosystem function has long been debated in science. Here we report the stability analysis of soil oribatid mite communities from environmentally stressed habitat(Namsan) and relatively well preserved habitat (Kwangreung) with the perspective of consistency as a primary criteria of stability. Stability of oribatid mite communities were evaluated with turnover rate, constancy analysis, b diversity index, and absolute abundance, abundance ranking, and the presence or absence of species over time. Out of 6 criteria, three consented that oribatid community from Kwangreung was more stable than that from Namsan. Those are turnover rate in litter layer, constancy analysis, and absolute abundance. Feasibility of stability analysis using oribatid mites was further discussed, rendering further study.

  • PDF

Evaluation of Carbon Sequestration Capacity of a 57-year-old Korean Pine Plantation in Mt. Taeh wa based on Carbon Flux Measurement Using Eddy-covariance and Automated Soil Chamber System (에디 공분산 및 자동화 토양챔버 시스템을 이용한 탄소 플럭스 관측 기반 태화산 57년생 잣나무조림지의 탄소흡수능력 평가)

  • Lee, Hojin;Ju, Hyungjun;Jeon, Jihyeon;Lee, Minsu;Suh, Sang-Uk;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.554-568
    • /
    • 2021
  • Forests are the largest carbon (C) sinks in terrestrial ecosystems. Recently, as enhancing forest C sequestration capacity has been proposed as a basic direction of the Republic of Korea's "2050 Carbon Neutral Strategy," accurate estimation of forest C sequestration has been emphasized. According to the Intergovernmental Panel on Climate Change guidelines, sequestration quantity is calculated from changes in C stocks in forest C pools, such as biomass, deadwood, litter and soil layer, and harvested wood products. However, in Korea, only the overstory biomass increase is now considered the amount of sequestration quantity, so there can be a significant difference from the actual forest C sequestration. In this study, we quantified forest C exchange through C flux measurement using an eddy covariance system and an automated soil chamber system in a 57-year-old Korean pine plantation located in Mt. Taehwa, Gwangju-si, Gyeonggi-do. Then, the net amount of C sequestration was compared with the amount of the overstory biomass increase. We estimated the annual C stock change in the remaining C pools by comparing the net sequestration amount from the C flux measurement with the overstory biomass increase and C stock change in the litter layer. Therefore, the net C sequestration of the Korean pine plantation estimated from the flux measurement was 5.96 MgC ha-1, which was about 2.2 times greater than 2.77 MgC ha-1 of the overstory biomass increase. The annual C stock increase in the litter layer was estimated to be 0.75 MgC ha-1, resulting in a total annual C stock increase of 2.45 MgC ha-1 in the remaining C pools. Our results indicate that the domestic forest is a larger C sink than the current methods, implying that more accurate calculations of the C sequestration capacity are necessary to quantify C stock changes in C pools along with the C flux measurement.