• Title/Summary/Keyword: Lithology

Search Result 163, Processing Time 0.026 seconds

Palaeomagnetic Study of Sedimentary and Igneous Rocks in the Yangsan Strike-slip Fault Area, SE Korea (양산단층지역에 분포하는 퇴적암 및 화성암류에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo;Son, Moon;Jung, Hyun-Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.753-765
    • /
    • 1996
  • It is a well known fact that the remanent magnetization direction of the Tertiary rocks is deflected significantly clockwise (about $50^{\circ}$) in the Tertiary basins of the southeastern part of Korean peninsula. This fact has been interpreted as an evidence of north-south spreading of the East Sea (Sea of Japan) and dextral strike-slip motion of the Yangsan fault. As deflection (rotation) of remanent magnetizations is frequently reported from various regions of the world in the vicinities of strike-slip fault, such phenomena are to be expected in the Yangsan fault region also. It was the purpose of this study to clarify whether such premise is right or not. A total of 445 independently oriented core samples were collected from Cretaceous rocks of various lithology (sedimentary rocks, andesites and I-type granites) in the Yangsan fault area. In spite of through AF and thermal demagnetization experiments, no sign of remanent magnetization deflection was found. Instead, palaeomagnetic poles calculated from formation-mean ChRM directions are very similar to those of contemporary (Barremian, and late Cretaceous-Tertiary) sedimentary and plutonic rocks in the other parts of $Ky{\check{o}}ngsang$ basin as well as those of China. Therefore, possibility of tilting of granite plutons and horizontal block rotation of study area is excluded. It is also concluded that the Yangsan fault did not take any significant role in the Cenozoic tectonic evolution of southeast Korea and the East Sea region. The boundary between rotated and unrotated region of remanent magnetization is not the Yangsan fault line, but must lie further east of it.

  • PDF

Rock Physics Modeling: Report and a Case Study (암석 물리 모델링: 기술 보고 및 적용 사례)

  • Lee, Gwang H.
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.225-242
    • /
    • 2016
  • Rock physics serves as a useful tool for seismic reservoir characterization and monitoring by providing quantitative relationships between rock properties and seismic data. Rock physics models can predict effective moduli for reservoirs with different mineral components and pore fluids from well-log data. The distribution of reservoirs and fluids for the entire seismic volume can also be estimated from rock physics models. The first part of this report discusses the Voigt, Reuss, and Hashin-Shtrikman bounds for effective elastic moduli and the Gassmann fluid substitution. The second part reviews various contact models for moderate- to high-porosity sands. In the third part, constant-cement model, known to work well for the sand that gradually loses porosity with deteriorating sorting, was applied to the well-log data from an oil field in the North Sea. Lastly, the rock physics template constructed from the constant-cement model and the results from the prestack inversion of 2D seismic data were combined to predict the lithology and fluid types for the sand reservoir of this oil field.

Landslide Susceptibility Analysis and Vertification using Artificial Neural Network in the Kangneung Area (인공신경망을 이용한 강릉지역 산사태 취약성 분석 및 검증)

  • Lee, Sa-Ro;Lee, Myeong-Jin;Won, Jung-Seon
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.33-43
    • /
    • 2005
  • The purpose of this study is to make and validate landslide susceptibility map using artificial neural network and GIS in Kangneung area. For this, topography, soil, forest, geology and land cover data sets were constructed as a spatial database in GIS. From the database, slope, aspect, curvature, water system, topographic type, soil texture, soil material, soil drainage, soil effective thickness, wood type, wood age, wood diameter, forest density, lithology, land cover, and lineament were used as the landslide occurrence factors. The weight of the each factor was calculated, and applied to make landslide susceptibility maps using artificial neural network. Then the maps were validated using rate curve method which can predict qualitatively the landslide occurrence. The landslide susceptibility map can be used to reduce associated hazards, and to plan land use and construction as basic data.

Cosmogenic Nuclides Dating of the Earth Surface: Focusing on Korean Cases (우주선유발 동위원소를 이용한 지표면의 연대측정: 국내 사례를 중심으로)

  • Seong, Yeong Bae;Yu, Byung Yong
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.261-272
    • /
    • 2014
  • Over the last three decades, advances in AMS (Accelerator Mass Spectrometry) and Noble Gas Mass Spectrometer make various application of terrestrial cosmogenic nuclides (CNs) to wide range of earth surface sciences possible. Dating techniques can be divided into three sub-approaches: simple surface exposure dating, depth-profile dating, and burial dating, depending on the condition of targeted surfaces. In terms of Korean landscape view, CNs dating can be applied to fluvial and marine terrace, alluvial fan, tectonic landform (fault scarp and faulted surfaces), debris landforms such as rock fall, talus, block field and stream, lacustrine and marine wave-cut platform, cave deposits, Pliocene basin fill and archaeological sites. In addition, in terms of lithology, the previous limit to quartz-rich rocks such as granite and gneiss can be expanded to volcanic and carbonate rocks with the help of recent advances in CNs analysis in those rocks.

A rock mass assessment procedure based on quantitative geophysical log analysis of coal measure sequences (탄층에 대한 정량적 물리검층에 기초한 암반 평가 과정)

  • Hatherly Peter;Medhurst Terry;Sliwa Renate;Turner Roland
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.112-117
    • /
    • 2005
  • Geophysical logging is routinely undertaken as part of most coal mine exploration programs. Currently, the main application for the logs is to determine coal seam depth and to qualitatively estimate coal quality, lithology, and rock strength. However, further information can be obtained, if quantitative log interpretation is made. To assist in the uptake of quantitative interpretation, we discuss log responses in terms of the mineralogy of the clastic sedimentary rocks frequently found in the Australian black coal mining areas of the Sydney and Bowen Basins. We find that the log responses can be tied to the mineralogy with reasonable confidence. Ambiguities in the interpretation will be better resolved if a full suite of logs is run. A method for checking for internal consistency, by comparing calculated and observed velocities, is also described. A key driver for quantitative interpretation is geotechnical characterisation. We propose a classification system for clastic rocks that takes into consideration physical rock properties that can be inferred from geophysical logs.

Geophysical Exploration and Well Logging for the Delineation of Geological Structures in a Testbed (실험 부지에서의 지질구조 파악을 위한 물리탐사 및 물리검층)

  • Yu, Huieun;Shin, Jehyun;Kim, Bitnarae;Cho, Ahyun;Lee, Gang Hoon;Pyun, Sukjoon;Hwang, Seho;Yu, Young-Chul;Cho, Ho-Young;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.19-33
    • /
    • 2022
  • When subsurface is polluted, contaminants tend to migrate through groundwater flow path. The groundwater flow path is highly dependent upon underground geological structures in the contaminated area. Geophysical survey is an useful tool to identify subsurface geological structure. In addition, geophysical logging in a borehole precisely provides detailed information about geological characteristics in vicinity of the borehole, including fractures, lithology, and groundwater level. In this work, surface seismic refraction and electrical resistivity surveys were conducted in a test site located in Namyangju city, South Korea, along with well logging tests in five boreholes installed in the site. Geophysical data and well logging data were collected and processed to construct an 3D geological map in the site.

The Effects of Incised Meandering Valley and Lithological Differences on the Grain Size and Shape of Channel Bed Materials: A Case Study of the Upper and Middle Reaches of Gongneungcheon River (감입곡류 지형과 암질 차이가 하상 퇴적물 입경 및 형상에 미친 영향: 공릉천 중상류 구간을 사례로)

  • Chen, Hui;Kim, Jong Wook;Han, Min;Byun, Jongmin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.15-26
    • /
    • 2019
  • In this study, we investigated the grain size, lithological type, and shape of coarse bed materials in the upper and middle reaches of Gongneungcheon River. For this purpose, 11 sampling points were selected along the river. For 100 samples of the coarse bed materials at each point, three axes (long, intermediate, and short) of samples were measured, and their lithological types were also identified. By measuring grain size, the sphericity and flatness of samples were calculated. Finally, every particle was classified into four shape categories: sphere, disc, blade and rod. We found that the grain size in incised meandering reach is the largest. This is mainly due to the supply of coarse materials from steep valley sides along the meandering channel. According to the lithological analysis, all samples were identified as granite, gneiss and schist, and quartz. The proportion of granite decreased, whereas the proportion of gneiss and schist increased downstream. These patterns indicate that the bedrock distribution within the study area accounts for the downstream lithological variation of coarse bed materials. With regard to the grain shape, sphericity gradually decreased while flatness gradually increased downstream. In the case of the shape classification, unlike the general downstream pattern of grain shape, the proportion of the sphere type decreased and the proportion of the blade type increased downstream. Such a reversal change in the downstream direction turns out to be determined by the lithology (such as foliation, bedding and the pattern of weathering) of coarse bed materials.

Establishment of the roof model and optimization of the working face length in top coal caving mining

  • Chang-Xiang Wang;Qing-Heng Gu;Meng Zhang;Cheng-Yang Jia;Bao-Liang Zhang;Jian-Hang Wang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.427-440
    • /
    • 2024
  • This study concentrates on the 301 comprehensive caving working face, notable for its considerable mining height. The roof model is established by integrating prior geological data and the latest borehole rock stratum's physical and mechanical parameters. This comprehensive approach enables the determination of lithology, thickness, and mechanical properties of the roof within 50 m of the primary mining coal seam. Utilizing the transfer rock beam theory and incorporating mining pressure monitoring data, the study delves into the geometric parameters of the direct roof, basic roof movement, and roof pressure during the initial mining process of the 301 comprehensive caving working face. The direct roof of the mining working face is stratified into upper and lower sections. The lower direct roof consists of 6.0 m thick coarse sandstone, while the upper direct roof comprises 9.2 m coarse sandstone, 2.6 m sandy mudstone, and 2.8 m medium sandstone. The basic roof stratum, totaling 22.1 m in thickness, includes layers such as silty sand, medium sandstone, sandy mudstone, and coal. The first pressure step of the basic roof is 61.6 m, with theoretical research indicating a maximum roof pressure of 1.62 MPa during periodic pressure. Extensive simulations and analyses of roof subsidence and advanced abutment pressure under varying working face lengths. Optimal roof control effect is observed when the mining face length falls within the range of 140 m-155 m. This study holds significance as it optimizes the working face length in thick coal seams, enhancing safety and efficiency in coal mining operations.

Compositional Variations of the Beach Sediments in Cheju Island (제주도 해빈퇴적물의 구성성분)

  • 지옥미;우경식
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.480-492
    • /
    • 1995
  • Petrographic investigation has been carried out to determine the composition of the beach sediments and the affecting factors which have controlled their compositional variations from Hyupjae, Aeweol, Iho, Samyang, Hamdeok, Sehwa, Pyoseon, Jungmun, and Hwasun areas along the coast of the Cheju Island. Average mean sizes of the beach sediments are Hyupjae 2.2ø, Aeweol 0.8ø, Iho 1.4ø, Samyang 2.4ø, Hamdeok 1.6ø, Sehwa 1.5ø, Pyoseon 2.1ø, Jungmun 0.4ø, and Hwasun 0.9ø, thus, aries from 0.4 to 2.4ø. The beach sediments from Pyoseon and Hwasun areas are poorly sorted, those from Aeweol and Jungmun areas are moderately sorted and those from the rest of the areas are moderately well sorted. While-colored beach sediments in Hyupjae, Aeweol, Hamdeok, Sehwa, and Pyoseon areas are mostly composed of calcareous shells (more than 85%) such as mollusk, red algae, benthic foraminiferas, etc., whereas volcanic rock fragment is the dominant component of the black-colored beach sediments in Iho, Samyang, and Hwasun areas. Especially, the relatively white-colored beach sediment in Jungmun area, which is on e of the carbonate-dominant areas, shows a higher content of rock fragments than the other carbonate-dominant areas. The beach sediments in Pyoseon area show a high content of carbonate intercalates. Considering the contributions by organisms according to grain size, grains with the size range of 1∼2ø are mostly composed of calcareous red algae fragments, and grains with the size range of 2∼3ø consist of mollusk fragments. It is also notable that bryozoan fragments comprise about 48% of the sediment in Samyang area with the size range of 0∼1ø. The composition of the beach sediments in Cheju Island appears o be controlled by the riverine supply rate of volcanic rock fragments, the lithology of the rocks distributed ear the beaches, the direction of alongshore currents, and the direction of storms, etc.. It is suggested that the beach sediments in Iho and Samyang areas show black color because of the higher supply rate of the volcanic rock fragments from the nearby rivers, whereas those in the rest of the areas show white color due to the relatively lower content of volcanic rock fragments and higher content of carbonate components transported from shallow marine environment. In Hwasun area, the content of volcanic rock fragments is high, and they are directly from the tuffaceous rocks distributed nearby. Also, the volcanic rock fragments in Jungmun area are transported not only from the rivers nearby but also from the nearby tuffs by storm activities. The beach sediment in Pyoseon area contains a high content of carbonate intercalates, which formed in the nearby shallow marine environment through marine cementation. This indicates that active marine cementation occurs in shallow marine environment near Pyoseon area.

  • PDF

Time-lapse Geophysical Monitoring of $CO_2$ Sequestration (시간 경과에 따른 반복적 물리탐사 기법을 이용한 이산화탄소의 지중처리 모니터링)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Nam, Myung-Jin;Song, Yoon-Ho;Lee, Tae-Jong;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.280-286
    • /
    • 2005
  • Geological sequestration of carbon dioxide ($CO_2$) is one of the most effective strategies far long-term removal of greenhouse gas from atmosphere. This paper reviews three projects for the $CO_2$ sequestration in geological formation. A unique $CO_2$ injection into a marine aquifer has been successfully monitored with repeated surface seismic measurements in the North Sea Sleipner West field. The seismic images reveal the extent and internal shape of the $CO_2$ bubble. Massive miscible $CO_2$ has been injected into a complex fractured carbonate reservoir at the Weyburn oil filed. High-resolution time-lapse P-wave data were successfully obtained to map the features of $CO_2$ movements within the two thin zones of different lithology. From the time-lapse crosswell EM imaging at the Lost Hills oil field in central California, U.S.A., the replacement of brine with $CO_2$ has been confirmed through a decrease of conductivity. The conductivity image was successfully compared with induction logs observed in the two wells.