• 제목/요약/키워드: Lithium polymer batteries

검색결과 143건 처리시간 0.022초

Novel State-of-Charge Estimation Method for Lithium Polymer Batteries Using Electrochemical Impedance Spectroscopy

  • Lee, Jong-Hak;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.237-243
    • /
    • 2011
  • Lithium batteries are widely used in mobile electronic devices due to their higher voltage and energy density, lighter weight and longer life cycle when compared to other secondary batteries. In particular, a high demand for lithium batteries is expected for electric cars. In the case of the lithium batteries used in electric cars, driving distance must be calculated accurately and discharging should not be done below a level that makes it impossible to crank. Therefore, accurate information on the state-of-charge (SOC) becomes an essential element for reliable driving. In this paper, a novel method for estimating the SOC of lithium polymer batteries using AC impedance is proposed. In the proposed method, the parameters are extracted by fitting the measured impedance spectrum on an equivalent impedance model and the variation in the parameter values at each SOC is used to estimate the SOC. Also to shorten the long length of time required for the measurement of the impedance spectrum, a novel method is proposed that can extract the equivalent impedance model parameters of lithium polymer batteries with the impedance measured at only two specific frequencies. Experiments are conducted on lithium polymer batteries, with similar capacities, made by different manufacturers to prove the validity of the proposed method.

Electrochemistry of Conductive Polymers 46. Polymer Films as Overcharge Inhibitors for Lithium-Ion Rechargeable Batteries

  • Choi, Shin-Jung;Park, Su-Moon
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2010
  • Conducting polymer films grown from various aromatic compounds have been evaluated as overcharge protecting additives for lithium ion rechargeable batteries. The polymer films were grown electrochemically under the conditions similar to those encountered during the overcharging processes of lithium batteries and subsequently characterized by potentiodynamic, electrochemical quartz crystal microbalance, electrochemical impedance spectroscopic, and scanning electron microscopic experiments. Results indicate that bicyclic and polycyclic aromatic hydrocarbons would be poor candidates for inhibitors, while biphenyl, terphenyl, and benzene derivatives displayed excellent performances. Mixed polymer films grown from o-terphenyl and p-xylene show the best performance among the candidates.

New Solid Polymer Electrolyte for Lithium Secondary Batteries

  • Park, Jung-Ki;Lee, Yong-Min;Lee, Jun-Young;Ryou, Myeong-Hyeon
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.67-68
    • /
    • 2006
  • Solid polymer electrolyte is very important in the applications to high energy density lithium batteries of high safety. In this work, solid polymer electrolytes based on PE non-woven matrix, hybrid salt, and anion receptor were successfully prepared. They could provide high ion conduction phase with maintaining mechanical strength. They also showed high electrochemical stability and lithium ion transference number. This new type of solid polymer electrolyte is expected to be a good candidate for rechargeable solid state lithium secondary batteries.

  • PDF

웨어러블 기기의 배터리화재사례와 실험을 통한 화재위험성 분석 (Analysis of Fire Risk through Battery Fire Cases and Experiments of Wearable Devices)

  • 이정일
    • 대한안전경영과학회지
    • /
    • 제22권2호
    • /
    • pp.47-55
    • /
    • 2020
  • This study analyzed ignition probability about Lithium-polymer batteries of what variously were being produced wearable devices recently. The study analyzed ignition probability by PCM(Protection Circuit Module) operating state and overcharged, over-discharged, exposed to high temperatures of Lithium polymer batteries, analyzing wearable devices on the market. Then it classified experimental results to implement analysis comparison about weight, X-ray imaging, battery decomposition. With these experiments, the study analyzed combustion-possibility and fire patterns. These statistics will be used to measure and verify the cause of a fire when identify wearable devices using Lithium-polymer batteries.

리튬폴리머 축전지의 철도차량 적용 및 용량증대에 관한 연구 (A Study on the Rail Vehicle Applications and Increase the Capacity of Lithium Polymer Batteries)

  • 조규화;강승욱
    • 전기학회논문지P
    • /
    • 제65권4호
    • /
    • pp.340-345
    • /
    • 2016
  • Railway vehicle battery is supplying the power required for the initial start-up of the train, in the event of a fault in the vehicle, or catenary for supplying emergency power is one of the components are very important. Currently, the railway vehicles such as nickel-cadmium batteries are being used [1,2]. Ni-Cd batteries as a battery installed in the railway vehicles have a strong corrosion resistance is included, The charge-discharge performance is significantly degraded in cold weather, there is a danger of deterioration or explosion. Train accidents have been caused a lot of damage due to rapid deterioration and cracking of the battery and memory due to the effect of Ni-Cd batteries. In order to solve the problems, There is no risk of degradation, deterioration and leakage, cracking and exploding. maintenance is simple and applied measures proposed to apply Lithium Polymer battery of high performance. In addition, the lack of capacity problems identified by testing the different special systems is replaced by a 70Ah lithium-polymer battery is possible without changing the batteries of 50Ah caused by installing additional equipment in existing older trains were applied to the vehicle.

AC 임피던스를 이용한 리튬 전지의 충전상태 추정에 관한 연구 (A Research on the Estimation Method for the SOC of the Lithium Batteries Using AC Impedance)

  • 이종학;김상현;김욱;최우진
    • 전력전자학회논문지
    • /
    • 제14권6호
    • /
    • pp.457-465
    • /
    • 2009
  • 리튬계열 전지는 다른 이차전지에 비해 평균전압 및 에너지 밀도가 높으며 가볍고 수명이 긴 장점으로 인해 휴대용 전자기기에 폭넓게 사용되고 있으며, 특히 전기 자동차용으로 높은 수요가 예측되고 있다. 전기 자동차용 리튬 전지의 경우 운행 가능 거리의 정확한 계산이 요구되며, 또한 크랭킹이 불가능한 상태로 방전이 되지 않아야 하므로 충전상태에 대한 정확한 정보는 신뢰성 있는 운전을 위한 필수적인 요소가 된다. 본 논문에서는 AC 임피던스를 이용하여 리튬 폴리머 전지의 충전상태(SOC: State of Charge)를 추정하는 새로운 방법에 관해 제안한다. 제안된 방법에서는 주파수 별로 측정된 임피던스를 등가 임피던스 모델에 커브 피팅하여 파라미터를 추출하고, 추출된 파라미터를 이용하여 충전상태를 추정하였다. 제안된 방법에 의해 추출된 파라미터를 통해 리튬전지의 SOC 추정이 가능함을 증명하였고, 다수의 제조사에서 제작된 비슷한 용량의 리튬 폴리머 전지를 대상으로 한 실험을 통해 제안된 방법의 유용함을 검증하였다.

Electrochemical Properties of 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)siloles as Anode Active Material and Solid-state Electrolyte for Lithium-ion Batteries

  • Hyeong Rok Si;Young Tae Park
    • 대한화학회지
    • /
    • 제67권6호
    • /
    • pp.429-440
    • /
    • 2023
  • 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)-3,4-diphenylsiloles (R=Et, i-Pr, n-Hex; 3a-c) were prepared and utilized as anode active materials for lithium-ion batteries; 3a was also used as a filler for the solid-state electrolytes (SSE). Siloles 3a-c were prepared by substitution reactions in which the two bromine groups of 1,1-dialkyl-2,5-dibromo-3,4-diphe- nylsiloles, used as precursors, were substituted with trimethylsilylacetylene in the presence of palladium chloride, copper iodide, and triphenylphosphine in diisopropylamine. Among siloles 3a-c, 3a had the best electrochemical properties as an anode material for lithium-ion batteries, including an initial capacity of 758 mAhg-1 (0.1 A/g), which was reduced to 547 mAhg-1 and then increased to 1,225 mAhg-1 at 500 cycles. A 3a-composite polymer electrolyte (3a-CPE) was prepared using silole 3a as an additive at concentrations of 1, 2, 3, and 4 wt.%. The 2 wt.% 3a-CPE composite afforded an excellent ionic conductivity of 1.09 × 10-3 Scm-1 at 60℃, indicating that silole 3a has potential applicability as an anode active material for lithium-ion batteries, and can also be used as an additive for the SSE of lithium-ion batteries.

2D Coordination Polymer Derived Co3O4 Nanocrystals as High Performance Anode Material of Lithium-Ion Batteries

  • Wen, Hao;Shi, Changdong;Gao, Yuanrui;Rong, Hongren;Sha, Yanyong;Liu, Hongjiang;Liu, Qi
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850139.1-1850139.10
    • /
    • 2018
  • $Co_3O_4$ nanocrystals have been synthesized via an ordinary one-step calcination of a cobalt-based 2D coordination polymer [Co(tfbdc)(4,4'-bpy)$(H_2O)_2$]. As an anode material for lithium-ion batteries, the obtained $Co_3O_4$ nanocrystals exhibit high reversible capacity, excellent cyclic stability and better rate capability. The reversible capacity of the $Co_3O_4$ nanocrystals maintains $713mA\;h\;g^{-1}$ after 50 cycles at a current density of $50mA\;g^{-1}$. Our results confirm that searching for metal oxides nanomaterials used as anode materials of lithium ion batteries via the calcinations of 2D coordination polymer is a new route.

리튬 폴리머 드론 배터리 방전시 이상가스에 대한 연구 (Study on-Gas-generating Property Of Lithium Polymer Drone batteries)

  • 이종헌;김재원;윤홍주;서원찬
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.195-204
    • /
    • 2023
  • 드론의 배터리 시스템은 리튬이온 또는 리튬폴리머 배터리를 사용하는데, 드론 사용 후 폐기 과정에서 화재 원인은 폐기되는 배터리에서 발생하는 가연성 가스인 것으로 알려졌다. 폐기공정에 들어간 배터리는 대부분 산소가 발생했지만 미량의 가연성 가스도 발생했고, 처리에 사용된 장비에서도 다량의 염소 이온과 황산염이 검출됐다. 이를 조기에 감지하는 시스템이 구성된다면 폐기 배터리로 인한 사고 위험을 줄일 수 있을 것이다.

A Novel Separator Membrane for Safer Lithium-ion Rechargeable Batteries

  • Lee, Sang-Young;Kim, Seok-Koo;Hong, Jang-Hyuck;Shin, Byeong-Jin;Park, Jong-Hyuck;Sohn, Joon-Yong;Jang, Hyun-Min;Ahn, Soon-Ho
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.69-70
    • /
    • 2006
  • In lithium-ion batteries, separator membrane's, main role is to physically isolate a cathode and an anode while maintaining rapid transport of ionic charge carriers during the passage of electric current. As far as battery safety is concerned, the electrical isolation of electrodes is most crucial since unexpected short-circuits across the membrane induces hot spots where thermal runaway may break out. Internal short-circuits are generally believed to occur by protrusions on the electrode surface either by unavoidable deposits of metallic impurities or by dendritic lithium growth during battery operation. Another cause is shrinkage of the separator membrane when exposed to heat. If separator membrane can be engineered to prevent the internal short-circuit, it will not be difficult to improve lithium-ion batteries' safety. Commonly the separators employed in lithium-ion batteries are made of polyethylene (PE) and/or polypropylene (PP). These materials have terrible limitations in preventing the fore-mentioned internal short-circuit between electrodes due to their poor dimensional stability and mechanical strength. In this study we have developed a novel separator membrane that possesses very high thermal and mechanical stability. The cells employing this separator provided noticeable safety improvement in the various abuse tests.

  • PDF