• Title/Summary/Keyword: Lithium ion secondary battery

Search Result 214, Processing Time 0.159 seconds

The Benefit-Cost analysis for Korea Lithium-ion Battery Waste Recycling project and promotion plans (국내 중대형 이차전지 재활용 사업의 경제성 분석 및 발전방안 연구)

  • Mo, Jung-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.326-332
    • /
    • 2018
  • Korea faces major changes in energy policy, which include eco-friendly and zero-nuclear power. On the other hand, there are very few policies for the waste-management of mid- to large-sized lithium-ion batteries, such as electric car batteries and energy storage systems, which are expected to increase explosively due to such energy policy changes. Therefore, this study estimated the amount of mid- to large-sized lithium ion batteries waste and performed economics analysis of a middle and large sized secondary battery recycling project. Based on the results, a policy alternative for the revitalization of the related lithium-ion battery recycling industry is suggested. As a result, the B / C ratio of a domestic mid - to large - sized lithium ion battery recycling project is 1.06, in which the benefit is higher than the cost, so the business is economic feasible. Although the recycling project's economic efficiency is high, the recycling industry has not been activated in Korea because the domestic demand for rechargeable batteries recycling is very low. To solve this problem, this study proposes a plan to activate the industry by adding lithium secondary batteries to the EPR (Extended Producer Responsibility) items.

Synthesis of $LiCoO_2$ by solution route and its behaviour as a cathode material in lithium ion secondary battery (액상반응에 의해 합성한 $LiCoO_2$ 를 정극활물질로 이용한 Li ion 2차전지의 특성)

  • 김상필;조정수;박정후;심윤보;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.143-146
    • /
    • 1998
  • The $LiCoO_2$ powder was synthesized at >$700^{\circ}C$, >$850^{\circ}C$ by solution route. In this paper, we investigated X-ray diffraction, and charge-discharge performance for $LiCoO_2$/Li and $LiCoO_2$/MPCF cell. The $LiCoO_2$/Li ceSl exhibited a high avmge discharge potential of 38-3% and a good cycle life performance at 5(hnA/g during chargedischarge cycling between 43-3.0V. And, the $LiCoO_2$MPCF cell showed a high average discharge voltage of 3.6-3.W and a excellent cycle life prfomam during chargedischarge cycling b&wm 4 2-2.W. As a result, the $LiCoO_2$ powdm syd-eizd by solution route is a good cathode material for lithium ion secondary battery.

  • PDF

Techno-economic Analysis on the Present and Future of Secondary Battery Market for Electric Vehicles and ESS (전기차와 ESS용 이차전지 시장의 현재와 미래에 대한 기술경제적 분석)

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Interest in the future of the battery market is growing as Tesla announces plans to increase production of electric vehicles and to produce batteries. Tesla announced an action plan to reduce battery prices by 56% through 'Battery Day', which included expansion of factories to internalize batteries and improvement of materials and production technology. In the trend of automobile electrification, the expansion of the battery market, which accounts for 40% of the cost of electric vehicles, is inevitable, and the size of the electric vehicle battery market in 2026 is expected to increase more than five times compared to 2016. With the development of materials and process technology, the energy density of electric vehicle batteries is increasing while the price is decreasing. Soon, electric vehicles and internal combustion locomotives are expected to compete on the same line. Recently, the mileage of electric vehicles is approaching that of an internal combustion locomotive due to the installation of high-capacity batteries. In the EV battery market, Korean, Chinese and Japanese companies are fiercely competing. Based on market share in the first half of 2020, LG Chem, CATL, and Panasonic are leading the EV battery supply, and the top 10 companies included 3 Korean companies, 5 Chinese companies, and 2 Japanese companies. All-solid, lithium-sulfur, sodium-ion, and lithium air batteries are being discussed as the next-generation batteries after lithium-ion, among which all-solid-state batteries are the most active. All-solid-state batteries can dramatically improve stability and charging speed by using a solid electrolyte, and are excellent in terms of technology readiness level (TRL) among various technology alternatives. In order to increase the competitiveness of the battery industry in the future, efforts to increase the productivity and economy of electric vehicle batteries are also required along with the development of next-generation battery technology.

Performance of Expanded Graphite as Anode Materials for High Power Li-ion Secondary Batteries

  • Park, Do-Youn;Lim, Yun-Soo;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.343-346
    • /
    • 2010
  • The various expanded graphites (EGs) was prepared and applied as anode material for high power Li-ion secondary battery (LIB). By changing the processing conditions of EG, a series of EG with different structure were produced, showing the changed electrochemical properties. The charge-discharge test showed that the initial reversible capacity of EG anodes prepared at the suitable conditions was over 400 mAh/g and the charge capacity at 5 C-rate was 83.2 mAh/g. These values demonstrated the much improved electrochemical properties as compared with those for the graphite anode of 360 mAh/g and 19.4 mAh/g, respectively, showing the possibility of EG anode materials for high power LIB.

TEM sample preparation of microsized LiMn2O4 powder using an ion slicer

  • Jung Sik Park;Yoon‑Jung Kang;Sun Eui Choi;Yong Nam Jo
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.19.1-19.7
    • /
    • 2021
  • The main purpose of this paper is the preparation of transmission electron microscopy (TEM) samples from the microsized powders of lithium-ion secondary batteries. To avoid artefacts during TEM sample preparation, the use of ion slicer milling for thinning and maintaining the intrinsic structure is described. Argon-ion milling techniques have been widely examined to make optimal specimens, thereby making TEM analysis more reliable. In the past few years, the correction of spherical aberration (Cs) in scanning transmission electron microscopy (STEM) has been developing rapidly, which results in direct observation at an atomic level resolution not only at a high acceleration voltage but also at a deaccelerated voltage. In particular, low-kV application has markedly increased, which requires a sufficiently transparent specimen without structural distortion during the sample preparation process. In this study, sample preparation for high-resolution STEM observation is accomplished, and investigations on the crystal integrity are carried out by Cs-corrected STEM.

Quantitative Analysis of Patents Concerning Cathode Active Materials for Lithium-Ion Secondary Batteries Based on Layer Structure (층상구조기반의 리튬이차전지용 양극 활물질에 관한 특허정량분석)

  • Kim, Byung-Nam;Lim, Yong-Hwan;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.287-293
    • /
    • 2015
  • This paper discusses quantitative analyses of patents published for cathode active materials for lithium secondary batteries based on layer structure. Numbers of the patents analyzed were 356, 1628, 2915, 439, and 611 for Korea, USA, Japan, Europe, and PCT (WO), respectively. Trends of improved technologies and alternative technologies concerning lithium cobalt, from 1991 to 2012 were examined and the patent shares distribution of each principal countries about lithium secondary battery technologies were also scrutinized. The number of patents for the mixed structure technology and next-generation lithium secondary battery technology increased numerously in 2000. Particularly in 2005, lots of patents were also published and SANYO (34.5%), SONY (17.5%), LG (7%), and SAMSUNG (5.5%) possessed leading patent applicants. Finally, the research focus on cathode active materials for lithium secondary batteries was confirmed by bubble chart distributions for component-by-step process.

Electrochemical Characteristics of Carbon-coated LiFePO4 as a Cathode Material for Lithium Ion Secondary Batteries

  • Shin, Ho-Chul;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.168-171
    • /
    • 2005
  • The electrochemical properties of $LiFePO_4$ as a cathode for Li-ion batteries were improved by incorporating conductive carbon into the $LiFePO_4$. X-ray diffraction analysis and SEM observations revealed that the carbon-coated $LiFePO_4$ consisted of fine single crystalline particles, which were smaller than the bare $LiFePO_4$. The electrochemical performance of the carbon-coated $LiFePO_4$ was tested under various conditions. The carbon-coated $LiFePO_4$ showed much better performance in terms of the discharge capacity and cycling stability than the bare $LiFePO_4$. The improved electrochemical performances were found to be attributed to the reduced particle size and enhanced electrical conductivity of the $LiFePO_4$ by the carbon.

Charge-discharge behaviour of $LiNi_{0.85}Co_{0.15}O_2>/MPCF$ cell ($LiNi_{0.85}Co_{0.15}O_2/MPCF$전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.25-28
    • /
    • 1998
  • Lithiated cobalt and nickel oxides are becoming very attractive as active cathode materials for secondary lithium ion secondary battery. $LiCoO_2$ is easily synthesized from lithium cobalt salts, but has a relatively high oxidizing potential on charge. LiNiOz is synthesized by a more complex procedure and its nonstoichiometry significantly degraded the charge-discharge characteristics. But $LiNiO_2$ has a lower charge potential which increases the system stability. Lithiated cobalt and nickel oxides are iso-structure which make the preparation of solid solutions of $LiNi_{1-x}Co_xO_2$ for O$LiCoO_2 and LiNiO_2$ electrode. The aim of the presentb paper is to study the electrochemical behaviour, as weU as the possibilities for practical application of layered Iithiated nickel oxide stabilized by $Co^{3+}$ substitution as active cathode materials in lithium ion secondary battery.

  • PDF

The Effect of Inorganic Material in Polymer Electrolyte for Lithium Secondary Battery (리튬이차전지용 고분전해질의 무기물의 첨가에 대한 영향)

  • Park, Soo-Gil;Park, Jong-Eun;Lee, Hong-Ki;Lee, Ju-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.822-824
    • /
    • 1998
  • The lithium polymer battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key point of the secondary battery system. The new type of polymer electrolyte was prepared under a dry Ar atmosphere by dissolving $LiCIO_4$ in a matrix of EC, PC and then dispersing polyacrylonitrile(PAN). Also adding some inorganic filler $Al_2O_3$. The dispersed solution heated at $120^{\circ}C$. The polymer electrolyte were characterized by EIS(Electrochemical Impedance Spectroscopy), TGA(Thermo Gravimetric analysis), DMA(Dynamic Mechanical Analyzer), DSC (Differential Scanning Calorimetry). The lithium ion yield is 0.29 when PAN-$Al_2O_3$ which was applied DC 5mV. The ionic conductivity of PAN, PAN-$Al_2O_3$ polymer electrolytes were showed $1.0{\times}10^{-4}S/cm$, $8.4{\times}10^{-4}S/cm$ at room temperature. When inorganic filler was added in the polymer electrolyte, ionic conductivity and lithium yield more larger than without inorganic filler.

  • PDF

The Electrical Characteristic of Composite Film for Lithium Secondary Battery by adding DMSO (DMSO 첨가에 따른 리튬이차전지용 복합필름의 전기적 특성)

  • 박수길;김종진;이창진;김상욱;김현후;임기조;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.269-272
    • /
    • 1997
  • The Lithium ion secondary battery has been developed for high energy density of portable electrical device and electronics. Among the many conductive polymer materials, the positive active film for Li polymer battery system was synthesized successfully from polyphenylene diamine(PPD) by chemical polymerization in our lab. And PPD-DMcT(2, 5-dimercapto-1, 3, 4-thi-adiazole) composite flim conductive material, at high temperature was also prerared with the addition of dimethylsulfoxide(DMSO). The surface morphology and thermal stability of prepared composite flim was carried out by using SEM and TGA, respectively. Electrochemical and electrical conductivity of composite flim were also discussed by cyclic voltammetry and four-probe method in dry box(<27pm). And the electrode reaction mechanism was detected and analyzed from the half cell unit battery system.

  • PDF