• Title/Summary/Keyword: Lithium ion secondary batteries

Search Result 161, Processing Time 0.028 seconds

Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries (리튬이차전지의 과충전에 의한 열폭주 현상의 이해)

  • Minseo Lee;Ji-sun You;Kyeong-sin Kang;Jaesung Lee;Sungyool Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.55-72
    • /
    • 2024
  • Secondary batteries are used as an essential renewable energy source in our lives, such as electric vehicles and energy storage systems (ESS), as an alternative to fossil fuels due to global warming. However, cases of battery fires and explosions have been reported due to thermal runaway in secondary batteries due to various causes such as overdischarge, high-speed charging and discharging, and external short circuit, and great efforts are being made to find solutions suitable for each cause. In particular, as cases presumed to be caused by the overcharging process have been reported, this review will examine the chemical reactions of secondary batteries that can occur during the overcharging process and discuss risk investigation methods to check and prevent them.

Preparation of Cathode Materials for Lithium Rechargeable Batteries using Transition Metals Recycled from Li(Ni1-x-yCoxMny)O2 Secondary Battery Scraps (Li(Ni1-x-yCoxMny)O2계 이차전지 공정 스크랩으로부터 회수한 전이금속을 활용한 리튬이차전지 양극재 제조)

  • Lee, Jae-Won;Kim, Dae Weon;Jang, Seong Tae
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • Cathode materials and their precursors are prepared with transition metal solutions recycled from the the waste lithium-ion batteries containing NCM (nickel-cobalt-manganese) cathodes by a $H_2$ and C-reduction process. The recycled transition metal sulfate solutions are used in a co-precipitation process in a CSTR reactor to obtain the transition metal hydroxide. The NCM cathode materials (Ni:Mn:Co=5:3:2) are prepared from the transition metal hydroxide by calcining with lithium carbonate. X-ray diffraction and scanning electron microscopy analyses show that the cathode material has a layered structure and particle size of about 10 ${\mu}m$. The cathode materials also exhibited a capacity of about 160 mAh/g with a retention rate of 93~96% after 100 cycles.

Synthesis and Electrochemical Characteristics of Li0.7[Ni0.05Mn0.95]O2 as a Positive Material for Rechargeable Lithium Batteries

  • Shin, Sun-Sik;Kim, Dong-Won;Sun, Yang-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.679-682
    • /
    • 2002
  • Layered Na0.7[Ni0.05Mn0.95]O2 compounds have been synthesized by a sol-gel method, using glycolic acid as a chelating agent. Na0.7[Ni0.05Mn0.95]O2 precursors w ere used to prepare layered lithium manganese oxides by ion exchange for Na by Li, using LiBr in hexanol. Powder X-ray diffraction shows the layered Na0.7[Ni0.05Mn0.95]O2 has an O3 type structure, which exhibits a large reversible capacity of approximately 190 mA h g-1 in the 2.4-4.5 V range. Na0.7[Ni0.05Mn0.95]O2 powders undergo transformation to spinel during cycling.

Preparation of Silicon-Carbon-Graphene Composites and their Application to Lithium Ion Secondary Battery (실리콘-탄소-그래핀 복합체 제조 및 리튬이온 이차전지 응용)

  • Kim, SunKyung;Kim, ChanMi;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.127-137
    • /
    • 2019
  • Recently, high electrochemical performance anode materials for lithium ion secondary batteries are of interest. Here, we present silicon-carbon-graphene (Si-C-GR) composites for high performance anode materials of lithium ion secondary battery (LIB). Aerosol process and heat-treatment were employed to prepare the Si-C-GR composites using a colloidal mixture of silicon, glucose, and graphene oxide precursor. The effects of the size of the silicon particles in Si-C-GR composites on the material properties including the morphology and crystal structure were investigated. Silicon particles ranged from 50 nm to 1 ㎛ in average diameter were employed while concentration of silicon, graphene oxide and glucose was fixed in the aerosol precursor. Morphology of as-fabricated Si-C-GR composites was generally the shape of a crumpled paper ball and the Si particles were well wrapped in carbon and graphene. The size range of composites was about from 2.2 to 2.9 ㎛. The composites including silicon particles larger than 200 nm in size exhibited higher performance as LIB anodes such as capacity and coulombic efficiency than silicon particles less than 100 nm, which were about 1500 mAh/g at 100 cycles in capacity and 99% in coulombic efficiency, respectively.

Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes (고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성)

  • Sung Won Hwang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

  • PDF

A Study on High Thermal Stable Separator Coating Machine for High-Capacity Lithium Ion Secondary Battery (고용량 리튬이온이차전지용 고내열성 분리막 코팅장비 연구)

  • Noh, Jin-Hee;Son, Hwa-Jin;Lee, Ho-Chul;Park, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.45-51
    • /
    • 2019
  • As the separator becomes thinner, the role of thermal stability becomes more important in ensuring the high capacity of medium- and large-sized lithium-ion secondary batteries. In this study, we researched coating technology to improve the separator's thermal stability. We minimized the coating time by optimizing the design of a vertical two-stage coater that was thin, uniform, and capable of coating on both sides at the same time with a maximum 2㎛ thickness coating layer of fluorinated polymer (PVdF-HFP) on the bare polyethylene (PE) separator, which increased the thermal stability. In addition, during the coating process, a dual-jacket-roll method of drying was developed that increased the drying effectiveness without thermal damage to the separator. We also investigated the thermal stability of the separator manufactured from a coating machine, and studied the battery-applied performance by making a lithium-ion pouch battery.

Analysis of the Secondary Battery Charge/Discharge System Using State Space Averaging Method (상태공간평균화법에 의한 2차전지 충방전 시스템의 해석)

  • Won, Hwa-Young;Chae, Soo-Yong;Lee, Hyoung-Ju;Kim, Hee-Sun;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.13-15
    • /
    • 2008
  • Charging or discharging secondary batteries such as a lithium-ion battery is essential in the stage of production and takes long time over two hours. And the charge/discharge system is operated with high switching frequency over several tens kHz. Therefore, to simulate such a system in the conventional way takes very long time and huge files are produced. Finally, the simulation would be unable with general PC class. In this paper, the lithium-ion battery charge/discharge system is analyzed by using state space averaging method. As a result, the simulation time is reduced dramatically and the charge/- discharge characteristics of the lithium-ion battery can be observed.

  • PDF

Development of Room Temperature Na/S Secondary Batteries (상온형 나트륨/유황 이차전지 개발 동향)

  • RYU, HOSUK;KIM, INSOO;PARK, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

Novel Synthesis Method and Electrochemical Characteristics of Lithium Titanium Oxide as Anode Material for Lithium Secondary Battery

  • Kim Han-Joo;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.119-123
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. Li$_{4}$Ti$_{5}$O$_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here Li$_{4}$Ti$_{5}$O$_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed Li$_{4}$ Ti$_{5}$O$_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of Li$_{4}$ Ti$_{5}$O$_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\~$ 3.0 V. Furthermore, the crystalline structure of Li$_{4}$ Ti$_{5}$O$_{12}$ didn't transform during the lithium intercalation and deintercalation process.