• 제목/요약/키워드: Lithium anode

검색결과 455건 처리시간 0.025초

열전지용 리튬음극의 전기화학적 특성 (Electrochemical Properties of Lithium Anode for Thermal Batteries)

  • 임채남;윤현기;안태영;여재성;하상현;유혜련;백승수;조장현
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.696-702
    • /
    • 2018
  • 최근 열전지는 우주 및 국방분야에서 활용하기 위하여 고출력 및 고에너지 밀도의 새로운 전극재료가 요구되는 실정이다. 본 논문에서는 성형성과 용량의 한계를 가지는 펠릿 타입의 리튬-실리콘 합금(Li(Si)) 음극을 대체하기 위하여 고밀도를 가지는 리튬음극을 제조하고, 단위전지 및 열전지의 전기화학적 성능에 미치는 영향을 고찰하였다. 리튬음극은 $500^{\circ}C$에서 안정적인 작동을 위하여 철 분말을 바인더로 사용하였고 리튬 중량별(17, 15, 13 wt%) 단위전지 성능평가를 통해 리튬 13 wt%에서 안정적인 성능을 확인하였다. 또한 리튬음극을 사용한 단위전지의 개회로전압이 2.06 V로 Li(Si) 음극 개회로전압 1.93 V에 비해 약 0.1 V 이상 높게 나타났고, first phase에서 리튬음극의 비용량은 $1,632As{\cdot}g^{-1}$로 Li(Si) 음극의 비용량 $1,181As{\cdot}g^{-1}$에 비해 약 1.4배 정도 성능이 향상됨을 확인하였다. 리튬음극을 적용한 열전지를 상온 및 고온 성능시험 결과를 통하여 Li(Si) 음극 열전지에 비해 전압 및 작동시간 등이 탁월하며, 출력특성 및 에너지밀도가 획기적으로 향상됨을 확인하였다.

Novel Synthesis Method and Electrochemical Characteristics of Lithium Titanium Oxide as Anode Material for Lithium Secondary Battery

  • Kim Han-Joo;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.119-123
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. Li$_{4}$Ti$_{5}$O$_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here Li$_{4}$Ti$_{5}$O$_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed Li$_{4}$ Ti$_{5}$O$_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of Li$_{4}$ Ti$_{5}$O$_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\~$ 3.0 V. Furthermore, the crystalline structure of Li$_{4}$ Ti$_{5}$O$_{12}$ didn't transform during the lithium intercalation and deintercalation process.

리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향 (Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries)

  • 임채남;안태영;유혜련;하상현;여재성;조장현;윤현기
    • 한국전기전자재료학회논문지
    • /
    • 제32권2호
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

Electrochemical Properties of 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)siloles as Anode Active Material and Solid-state Electrolyte for Lithium-ion Batteries

  • Hyeong Rok Si;Young Tae Park
    • 대한화학회지
    • /
    • 제67권6호
    • /
    • pp.429-440
    • /
    • 2023
  • 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)-3,4-diphenylsiloles (R=Et, i-Pr, n-Hex; 3a-c) were prepared and utilized as anode active materials for lithium-ion batteries; 3a was also used as a filler for the solid-state electrolytes (SSE). Siloles 3a-c were prepared by substitution reactions in which the two bromine groups of 1,1-dialkyl-2,5-dibromo-3,4-diphe- nylsiloles, used as precursors, were substituted with trimethylsilylacetylene in the presence of palladium chloride, copper iodide, and triphenylphosphine in diisopropylamine. Among siloles 3a-c, 3a had the best electrochemical properties as an anode material for lithium-ion batteries, including an initial capacity of 758 mAhg-1 (0.1 A/g), which was reduced to 547 mAhg-1 and then increased to 1,225 mAhg-1 at 500 cycles. A 3a-composite polymer electrolyte (3a-CPE) was prepared using silole 3a as an additive at concentrations of 1, 2, 3, and 4 wt.%. The 2 wt.% 3a-CPE composite afforded an excellent ionic conductivity of 1.09 × 10-3 Scm-1 at 60℃, indicating that silole 3a has potential applicability as an anode active material for lithium-ion batteries, and can also be used as an additive for the SSE of lithium-ion batteries.

탄소분말이 물리적으로 코팅된 리튬 음전극의 충방전 특성 (Charge-Discharge Characteristics of Physically Coated Lithium Anodes by Carbon Powders)

  • 김광만;이상효;이영기
    • Korean Chemical Engineering Research
    • /
    • 제49권5호
    • /
    • pp.554-559
    • /
    • 2011
  • 리튬금속을 음전극으로 사용할 때의 안전성과 전극 특성을 개선하기 위해, 리튬금속 표면에 각기 종류가 다른 3가지의 탄소분말을 리튬금속 표면에 물리적으로 코팅한 전극을 제조하고 이를 리튬 2차전지의 음전극으로 채택하여 충방전 특성을 조사하였다. 일차입자의 입경이 작고 비표면적이 큰 탄소분말로 코팅한 음전극을 채택하는 경우가 충진밀도가 높고 표면 거칠기가 낮으며, 충방전 특성도 우수하게 나타났다. 이러한 탄소분말 코팅 효과는 소형 셀일수록 더욱 유리하게 나타났다.

마그네슘열환원법을 이용한 실리콘-탄소 복합재 제조 및 리튬이차전지 음극재로의 이용 (Preparation of Silicon-Carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode Material for Lithium Ion Battery)

  • 김으뜸;권순형;김명수;정지철
    • 한국재료학회지
    • /
    • 제24권5호
    • /
    • pp.243-248
    • /
    • 2014
  • Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products ($Mg_2Si$ and $Mg_2SiO_4$) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., $N_2$ adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.

Electrochemical Properties and Structural Analysis of Carbon-Coated Silicon Anode for Lithium Secondary Batteries

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Byung-Won
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.37-41
    • /
    • 2008
  • The effects of carbon-coated silicon anode on the electrochemical properties and structural change were investigated. The carbon-coated silicon powders have been prepared by thermal decomposition under argon/10wt% propylene mixed gas flow at $700^{\circ}C$. The surface and crystal structure of the synthesized materials were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Lithium cells with electrodes made from the uncoated and the carbon coated silicon anode were assembled and tested. The carbon-coated silicon particles merged together well after the insertion/extraction of lithium ions, and showed a relatively low irreversible capacity compared with the uncoated silicon particle.

Electrochemical Characteristics of Lithium Vanadium Oxide for Lithium Secondary Battery

  • Kim, Hyung-Sun;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1267-1269
    • /
    • 2010
  • The pure crystalline $Li_{1.1}V_{0.9}O_2$ powder has been prepared by a simple solid state reaction of $Li_2CO_3$ and $V_2O_3$ precursors under nitrogen gas containing 10 mol % hydrogen gas flow. The structure of $Li_{1.1}V_{0.9}O_2$ powder was analyzed using Xray diffraction (XRD) and scanning electron microscope (SEM). The stoichiometric $Li_{1.1}V_{0.9}O_2$ powder was used as anode active material for lithium secondary batteries. Its electrochemical properties were investigated by cyclic voltammetry and constant current methods using lithium foil electrode. The observed specific discharge capacity and charge capacity were 360 mAh/g and 260 mAh/g during the first cycle, respectively. In addition, the cyclic efficiency of this cell was 72.2% in the first cycle. The specific capacity of $Li_{1.1}V_{0.9}O_2$ anode rapidly declines as the current rate increases and retains only 30 % of the capacity of 0.1C rate at 1C rate. The crystallinity of the $Li_{1.1}V_{0.9}O_2$ anode decrease as discharge reaction proceeds. However, the relative intensity of main peaks was almost recovered when the cell was charged up to 1.5 V.

Electrochemical Properties of Lithium Sulfur Battery with Silicon Anodes Lithiated by Direct Contact Method

  • Kim, Hyung Sun;Jeong, Tae-Gyung;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.228-233
    • /
    • 2016
  • It is hard to employ the carbon materials or the lithium metal foil for the anode of lithium sulfur batteries because of the poor passivation in ether-based electrolytes and the formation of lithium dendrites, respectively. Herein, we investigated the electrochemical characteristics of lithium sulfur batteries with lithiated silicon anode in the liquid electrolytes based on ether solvents. The silicon anodes were lithiated by direct contact with lithium foil in a 1M lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) solution in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 1:1. They were readily lithiated up to ~40% of their theoretical capacity with a 30 min contact time. In particular, the carbon mesh reported in our previous work was employed in order to maximize the performance by capturing the dissolved polysulfide in sulfur cathode. The reversible specific capacity of the lithiated silicon-sulfur batteries with carbon mesh was 1,129 mAh/g during the first cycle, and was maintained at 297 mAh/g even after 50 cycles at 0.2 C, without any problems of poor passivation or lithium dendrite formation.

압전 특성의 보호층을 통한 리튬 금속 전지의 전기화학적 특성 개선 (The Enhanced Electrochemical Performance of Lithium Metal Batteries through the Piezoelectric Protective Layer)

  • 박대웅;신원호;손희상
    • 멤브레인
    • /
    • 제33권1호
    • /
    • pp.13-22
    • /
    • 2023
  • 리튬 금속 기반 전극의 높은 용량에도 불구하고, 제어가 어려운 덴드라이트 성장은 낮은 쿨롱 효율, 안전 문제를 야기해, 리튬금속 배터리의 상용화를 제한한다. 본 연구에서는 압전 복합체인 BaTiO3/PVDF (BTO@PVDF) 기반 보호층을 리튬금속에 코팅, 덴드라이트에 의한 부피팽창으로 발생한 변형을 분극을 이용하여, 리튬 금속 전극의 안정성 및 성능을 향상하고자 한다. 이를 통해, 균일한 리튬이온의 증착이 가능해졌으며, BTO@PVDF 전극은 100 사이클 동안 약 98.1% 이상의 쿨롱 효율을 나타내었다. 또한, CV를 통해 향상된 리튬이온의 확산계수(DLi+) 증가를 보였으며, 본 연구에서 제시된 전략은 리튬 금속 전극의 성능 향상에 새로운 길을 나타내준다.