• Title/Summary/Keyword: Lithium Based Battery

Search Result 392, Processing Time 0.022 seconds

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

Compatibility of Lithium ion Phosphate Battery in Solar off Grid Application

  • Lakshmanan, Sathishkumar;Vetrivel, Dhanapal;Subban, Ravi;R., Saratha;Nanjan, Sugumaran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.472-478
    • /
    • 2022
  • Solar energy harvesting is practiced by various nations for the purpose of energy security and environment preservation in order to reduce overdependence on oil. Converting solar energy into electrical energy through Photovoltaic (PV) module can take place either in on-grid or off-grid applications. In recent time Lithium battery is exhibiting its presence in on-grid applications but its role in off-grid application is rarely discussed in the literature. The preliminary capacity and Peukert's study indicated that the battery quality is good and can be subjected for life cycle test. The capacity of the battery was 10.82 Ah at 1 A discharge current and the slope of 1.0117 in the Peukert's study indicated the reaction is very fast and independent on rate of discharge. In this study Lithium Iron Phosphate battery (LFP) after initial characterization was subjected to life cycle test which is specific to solar off-grid application as defined in IEC standard. The battery has delivered just 6 endurance units at room temperature before its capacity reached 75% of rated value. The low life of LFP battery in off-grid application is discussed based on State of Charge (SOC) operating window. The battery was operated both in high and low SOC's in off-grid application and both are detrimental to life of lithium battery. High SOC operation resulted in cell-to-cell variation and low SOC operation resulted in lithium plating on negative electrode. It is suggested that to make it more suitable for off-grid applications the battery by default has to be overdesigned by nearly 40% of its rated capacity.

Characterization of Polyolefin Separator Support Membranes with Hydrophilic Coatings (폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가)

  • Park, Yun Hwan;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.92-103
    • /
    • 2017
  • In this study, electrochemical performance of the hydrophilized separator for the lithium ion battery is studied. The polyolefin based material used as the separator for the lithium ion battery is hydrophobic, and the electrolytic solution using a carbonate-based organic solvent is hydrophilic. Therefore, the polyolefin separator is hydrophilized using various hydrophilic polymers because lithium ion battery uses an aqueous electrolyte solution. In order to evaluate change of the coated separator, the performances of separator in terms of surface morphology, porosity and the wettability are investigated. Finally, the resistance and the ionic conductivity of separator coated with lithium ion are measured to evaluate the performance of lithium ion battery. Separator coated with PMVE shows good hydrophilicity and excellent ionic conductivity because the porosity of the separator is maintained. We can confirm that this property makes potential candidates for lithium ion battery.

Capacity Design of Lithium Ion Battery Based on the Characteristics of Materials (${\cdot}$부극 재료의 특성에 따른 리튬이온전지의 용량설계)

  • Moon Seong-In;Doh Chil-Hoon;Yun Seong-Kyu;Yum Duk-Hyung
    • 한국전기화학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.7-27
    • /
    • 1998
  • In order to design capacity of lithium ion battery, some calculations were carried out based on the characteristics of materials by the given battery shape and dimension. The principle of design was built by the interpretation of the correlation of material, electrochemical and battery factors. Parameters of materials are fundamental physical properties of constituent such as cathode. separator, anode, current collectors and electrolyte. Electrochemical factor includes potential pattern as a function of specific capacity, specific discharge capacity(or initial irreversible specific capacity or Ah efficiency) as a function of specific charge capacity and material balancing. Parameters of battery are dimension, construction hardware and performance. Battery capacity was simulated for a lithium cobalt dioxide as cathode and a hard carbon as anode to achieve 1100 mAh for the charge limit voltage of 4.2V, the weight ratio(+/-) of 2.4 and ICR18650. A fabricated test cell (ICR18650) which have weight ratio(+/-) of 2.4 discharged to 1093 mAh for the charge limit voltage of 4.2V. The sequential discharge capacity show good correspondence with designed capacity.

  • PDF

SOC Estimation Algorithm for the Lithium-Ion Battery by Using a Linear State Observer (선형 상태 관측기를 이용한 리튬이온 배터리의 SOC 추정 알고리즘)

  • Tran, Ngoc-Tham;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.60-61
    • /
    • 2014
  • Lithium-Ion batteries have become the best tradeoff between energy, power density and cost of the energy storage system in many portable high electric power applications. In order to manage the battery efficiently State of Charge (SOC) of the battery needs to be estimated accurately. In this paper a model-based approach to estimate the SOC of the Lithium-Ion battery based on the estimation of the battery impedance is proposed. The validity and feasibility of the proposed algorithm is verified by the experimental results.

  • PDF

Hydrogen Reduction Behavior of NCM-based Lithium-ion Battery Cathode Materials (NCM계 리튬이온 배터리 양극재의 수소환원 거동)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.163-168
    • /
    • 2024
  • As the demand for lithium-ion batteries for electric vehicles is increasing, it is important to recover valuable metals from waste lithium-ion batteries. In this study, the effects of gas flow rate and hydrogen partial pressure on hydrogen reduction of NCM-based lithium-ion battery cathode materials were investigated. As the gas flow rate and hydrogen partial pressure increased, the weight loss rate increased significantly from the beginning of the reaction due to the reduction of NiO and CoO by hydrogen. At 700 ℃ and hydrogen partial pressure above 0.5 atm, Ni and Li2O were produced by hydrogen reduction. From the reduction product and Li recovery rate, the hydrogen reduction of NCM-based cathode materials was significantly affected by hydrogen partial pressure. The Li compounds recovered from the solution after water leaching of the reduction products were LiOH, LiOH·H2O, and Li2CO3, with about 0.02 wt% Al as an impurity.

Membrane Based Recovery of Valuable Lithium Metals from Lithium Ion Battery Waste (리튬이온전지 폐기물로부터 가치 있는 리튬금속을 멤브레인 기반으로 회수)

  • Togzhan Tangbay;Rajkumar Patel
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • Growing demand on clean energy to control environmental pollution is growing rapidly. Rechargeable battery such as lithium ion battery is excellent source of clean energy but there is rapid depletion of lithium metal due to high demand and supply mismatch. Recovery of the precious metal from the battery waste is one of the possible solution along with the environmental pollution control. Membrane based separation method is highly successful commercial process available to recover lithium from the waste. This work will cover various methods reported recently and will be compiled in the form of a review.

SOC Observer based on Piecewise Linear Modeling for Lithium-Polymer Battery (구간선형 모델링 기반의 리튬-폴리머 배터리 SOC 관측기)

  • Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.344-350
    • /
    • 2015
  • A battery management system requires accurate information on the battery state of charge (SOC) to achieve efficient energy management of electric vehicle and renewable energy systems. Although correct SOC estimation is difficult because of the changes in the electrical characteristics of the battery attributed to ambient temperature, service life, and operating point, various methods for accurate SOC estimation have been reported. On the basis of piecewise linear (PWL) modeling technique, this paper proposes a simple SOC observer for lithium-polymer batteries. For performance evaluation, the SOC estimated by the PWL SOC observer, the SOC measured by the battery-discharging experiment and the SOC estimated by the extended Kalman filter (EKF) estimator were compared through a PSIM simulation study.

Optimization Study on Polymerization of Crosslink-type Gel Polymer Electrolyte for Lithium-ion Polymer Battery (리튬이온폴리머전지용 가교형 겔폴리머전해질의 중합조건 최적화 연구)

  • Kim, Hyun-Soo;Moon, Seong-In;Kim, Sang-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.68-74
    • /
    • 2005
  • In this work, polymerization conditions of the gel polymer electrolyte (GPE) were studied to obtain better electrochemical performances in a lithium-ion polymer battery. When the polymerization temperature and time of the GPE were 70$^{\circ}C$ and 70 min, respectively, the lithium polymer battery showed excellent a rate capability and cycleability. The TMPETA (trimethylolpropane ethoxylate triacrylate)/TEGDMA (triethylene glycol dimethacrylate)-based cells prepared under optimized polymerization conditions showed excellent rate capability and low-temperature performances: The discharge capacity of cells at 2 Crate showed 92.1 % against 0.2C rate. The cell at -20 $^{\circ}C$ also delivered 82.4 % of the discharge capacity at room temperature.

A Study on the Initial Irreversible Capacity of Lithium Intercalation Using Gradually Increasing State of Charge

  • Doh, Chil-Hoon;Jin, Bong-Soo;Park, Chul-Wan;Moon, Seong-In;Yun, Mun-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.189-193
    • /
    • 2003
  • Initial irreversible capacity (IIC) can be defined by means of the initial intercalation Ah efficiency (IIE) and the initial irreversible specific capacity at the surface (IICs) with the linear-fit range of the intercalation so as to precisely express the irreversibility of an electrode-electrolyte system. Their relationship was IIC = Qc - Q$_{D}$ = (IIE$^{-1}$ - 1) Q$_{D}$ + IICs in the linear-fit range of IIE. Here, Qc and Qd signify charge and discharge capacity, respectively, based on a complete lithium ion battery cell. Charge indicates lithium insertion to carbon anode. Two terms of IIE and IICs depended on the types of active materials and compositions of the electrode and electrolyte but did not change with charging state. In an ideal electrode-electrolyte system, IIE and IICs would be 100%, 0 mAh/g for the electrode and mAh for the cell, respectively. These properties can be easily obtained by the Gradual Increasing of State of Charge (GISOC).OC).