• Title/Summary/Keyword: Liquid-thruster

Search Result 62, Processing Time 0.029 seconds

Survey on Research and Development of Field Emission Electric Propulsion Thrusters (전계방출 전기추진 추력기 연구개발 현황)

  • Park, Jeongjae;Lee, Bok Jik;Jeung, In-Seuck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.36-52
    • /
    • 2021
  • As the application of nano-satellites constellation increases worldwide in the wake of New Space era, there is growing demand for the development of thrusters for precise attitude and orbit control of small satellites. Field Emission Electric Propulsion(FEEP) thruster uses a liquid metal as a propellant and accelerates the ionized liquid metal through a strong electric field at the tip of the metal surface. FEEP thruster technology is suitable for nano-satellites which require various missions for attitude and orbit control, because it provides thrust ranging from 1 µN to 1 mN with high specific impulse up to about 10,000 s and can be miniaturized due to its simple structure. In this paper, the basics of FEEP thrusters are introduced, then the current status of research and development of FEEP thrusters are presented.

Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster (마이크로 추력장치용 과산화수소 촉매 반응기)

  • Lee, Dae-Hun;Cho, Jeong-Hun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

Atomization Characteristics of Three Types of Swirl Injectors (세 가지 유형 와류 분사기들의 미립화 특성)

  • Hadong Jung;Jonghyeon Ahn;Kyubok Ahn
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.75-88
    • /
    • 2023
  • In this paper, the atomization characteristics of bi-swirl coaxial injectors for a 420 N-class bipropellant thruster were investigated. Three types of injectors, namely closed-type, open-type, and screw-type, were manufactured and designed to have the same spray angle and injection pressure drop. Water was used as a simulant, and cold-flow tests were conducted under ambient temperature and pressure conditions. Since the inner and outer injectors were designed to be the same type, only the inner fuel injectors that were easy to measure were used. Using a phase doppler particle analyzer, the velocity and diameter of atomized droplets were measured. Closed-type swirl injector exhibited droplet distributions with relatively high velocities and small SMD compared to the other two injectors. Open-type swirl injector formed droplets with reverse velocities in the center region and had a large recirculation zone. Screw-type swirl injector showed a sharp decrease in droplet velocity and size with radial distance from the liquid film breakup point. For the same design requirements, the closed-type swirl injector has superior atomization performance.

A Study on the Pulse-mode Thrust Behavior of Liquid-monopropellant Hydrazine Thruster (단일액체추진제 하이드라진 추력기의 펄스모드 추력 거동 연구)

  • Kim Jeong Soo;Park Jeong;Choi Jongwook;Kim Sungcho;Jang Ki Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.194-197
    • /
    • 2005
  • Pulse-mode performance evaluation is made for a set of monopropellant hydrazine thrusters producing $0.95 lb_{f}$ of nominal steady-state thrust at an inlet pressure of 350 psia. With a brief description on the hot-firing test matrix, a typical data obtained from pulse-mode firing is given directly showing the variational behavior of propellant supply pressure, vacuum condition, and thrust, in addition to the thermal response of the thruster. The performance features are successfully compared to the reference criteria of 1-lbf standard monopropellant rocket engine.

  • PDF

Evolutionary Feature of Spray Droplets Exiting from a Direct-Injection Type Thruster Nozzle-Orifice (직접분사방식 추력기 노즐오리피스로부터 발생하는 분무입자의 발달특성)

  • Kim, Jin-Seok;Jung, Hun;Kim, Jeong-Soo;Park, Jeong;Kim, Sung-Cho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.149-152
    • /
    • 2009
  • Spray characteristic parameters such as droplet mean velocity, diameter, and volume flux are measured at various locations of spray in order to investigate the evolutionary feature of droplets exiting from a direct-injection type thruster nozzle-orifice. The experimental results indicate that the large droplets with high velocity at the center of upstream are broken-up into smaller droplets with low velocity due to their continuous momentum loss to surrounding air along with spray evolution toward downstream. Also it is found that the high volume flux expands its distribution in radial direction as a results of spray spreading and dispersion.

  • PDF

An Approach to the Optimization of Catalyst-bed L/D Configuration in 70 N-class Hydrazine Thruster (70 N급 하이드라진 추력기의 촉매대 형상(L/D) 최적화 연구)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.30-37
    • /
    • 2013
  • A ground hot-firing test was conducted to take out the optimal design configurations for the catalyst bed of liquid-monopropellant hydrazine thruster which could be used for primary engine or attitude control thruster of space vehicles. Performance characteristics with the variation of thrust-chamber length are investigated in terms of thrust, specific impulse, chamber pressure, characteristic velocity, and hydrazine decomposition rate. Additionally, the correlations between propellant-supply pressure and performance parameters are given. As results, increase of catalyst-bed length leads to performance degradation in this test condition, and also decreases propellant consumption efficiency with the supply pressure variation.

Development of Energy Balance Program for Staged-Combustion Cycle of Liquid Rocket Engine (액체로켓엔진 통합 설계를 위한 에너지 발란스 프로그램 개발)

  • Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.93-97
    • /
    • 2010
  • The energy balance program which can balance the relations among energy, mass flow, pressure in the staged-combustion cycle of the liquid rocket engine has been developed. The modular approach has been chosen for the analysis; the engine cycle consists of the elements from the predefined component analysis program. The engine with the staged-combustion cycle has been decomposed into several principal component modules, such as a thruster chamber, turbopumps, turbines, supply system components and a pre-burner. The program has been verified with comparison of the results to the selected data of the space shuttle main engine.

  • PDF

Liquid-monopropellant Thrusters for the 3-axis Attitude Control of Space Launch Vehicles -Part 1: Performance Characteristics and Application of Liquid-monopropellants (우주발사체 3축 자세제어용 단일액체추진제 추력기 -Part 1: 단일액체추진제의 성능특성 및 활용)

  • Kim, Jeong-Soo;Park, Jeong;Jung, Hun;Kam, Ho-Dong;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.175-178
    • /
    • 2011
  • A performance characteristics and application status of liquid-monopropellants used for 3-axis control thrusters are surveyed, in this paper. Hydrogen peroxide was widely used as monopropellant until mid-1960s, but it is rapidly replaced with hydrazine which has better performance of specific impulse, storability, and so on. Hydrazine is mostly employed as a liquid-monopropellant of satellite, interplanetary spacecraft, and space launch vehicle owing to its moderate performance features.

  • PDF

Welding Characteristic of Super Alloys for Nd:YAG Laser (Nd:YAG 레이저를 이용한 초합금 소재의 용접 특성 연구)

  • Yu, Sang-Hyeon;Lee, Je-Hun;Seo, Jeong;Kim, Jeong-O;Lee, Yeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.158-160
    • /
    • 2006
  • Super alloys are typically used for the liquid thruster in the aerospace industry. In this work, The bead-on-plate welding of Inconel 600, Inconel 625 and Haynes 230 using Nd:YAG laser are studied, in order to examine the effects of experimental parameters on their weldability. The micro-hardness and tensile strength of the specimens are also analyzed, to obtain the optimal welding conditions.

  • PDF

A STUDY ON THE PRESSURE BEHAVIOR INSIDE PROPELLANT LINE OF SATELLITE (인공위성 연료배관의 유압특성 연구)

  • Choi, Jin-Chul;Kim, Jeong-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.207-214
    • /
    • 2002
  • One of the way to derive design parameters of the fuel feeding system in satellite propulsion system is to analyze unsteady flow of liquid propellant (hydrazine). During steady thruster firing the flow rate is constant: if a thruster valve is abruptly shut down among a set of thrusters, pressure spikes much higher than the initial tank pressure occur. This renders the fuel flow unsteady, and the fluid pressure and flow rate to oscillate. If the pressure spikes are high enough, there are possibilities that propellant explosively decomposes, thruster valves we damaged, and adiabatic detonation of the hydrazine propellant is potentially incurred. Reflected shockwaves could also affect the calibration and operation of the pressure transducers. These necessitate the analysis of unsteady flow in the propulsion system design, and pressure behavior inside the propellant line obtained through some governing parameter variation is presented in this work.