• Title/Summary/Keyword: Liquid waste

Search Result 590, Processing Time 0.024 seconds

An Approach to the Localization of Technology for a Transport and Storage Container for Very Low-Level Radioactive Liquid Waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Kim, Hee Reyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.127-131
    • /
    • 2022
  • The structural safety of prototype transport and storage containers for very low-level radioactive liquid waste was experimentally estimated for its localization development. Transport containers for radioactive liquid waste have been researched and developed, however, there are no standardized commercial containers for very low-level radioactive waste in Korea. In this study, the structural safety of the designated IP-2 type container capable of transporting and temporarily storing large amounts of very low-level liquid waste, which is generated during the operation and decommissioning of nuclear power plants, was demonstrated. The stacking and drop tests, which were conducted to determine the structural integrity of the container, verified that there was no external leakage of the contents in spite of its structural deformation due to the drop impact. This study shows the effort required for the localization of the technology used in manufacturing transport and storage containers for very low-level radioactive liquid waste, and the additional structural reinforcement of the container in which the commercial intermediate bulk container (IBC) external frame was coupled.

The Effects of Liquid Waste from Methane Fermentation on Botanical Composition , Dry Matter Production and Nutrient Quality of Pasture Mixtures (혼파초지에서 메탄발효폐액의 시용이 식생구성 , 수량 및 목초품질에 미치는 영향)

  • 김정갑;신재성;임동규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 1987
  • The experiment was carried out to determine the optimum application rate of liquid waste from methane fermentation (LW) and its effect on botanical composition, dry matter yields and nutrient quality of pasture mixtures. Experimental fields was designed as a randomized block treated with NPK chemical fertilizer (NPK = 28-20-24 kg/lOa), NPK + Water 28 ton, 112 NPK + LW 28 ton, 112 NPK + LW 42 ton, LW 28 ton, LW 42 ton and LW 56 ton/lOa at Livestock Experiment Station in Suweon, 1985. The results obtained are summarized as follows: 1. Vegetation of introduced pastures, both in grasses and legumes, was markedly increased in the plots treated with methane-liquid waste. However, heavy application of liquid waste tended to increase of native weeds such as Polygronum spp., Rumex spp. and Lactuca spp. 2. Crude protein contents was increased in the plants applied with liquid waste, but NFE was decreased compared with those of chemical fertilizer applied. The concentrations of crude fat and crude fibre were, however less affected by the fertilizer resource. Among cell-wall constituents, cellulose content was decreased as the liquid waste application rate increased, while hemicellulose showed a negative association. 3. Productivity of the pasture was increased as the liquid waste application rate increased. The highest dry matter yields was obtained in the plot treated with LW 42 ton/lOa by 71 1 kg/lOa, which shows about 71% increments compared with those of chemical fertilizer treated. Net energy yields, both in starch value and NEL, were also markedly increased under liquid waste application. As a results, the optimum application rate of methane-liquid waste was found to be 42 ton in 10 a.

  • PDF

Cost-Effectiveness of Converting Fish Waste into Liquid Fertilizer

  • Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.230-233
    • /
    • 2011
  • To determine the cost-effectiveness of converting fish waste into liquid fertilizer, this study analyzed the production of 3 L of liquid fertilizer from the fermentation of fish waste. The total product cost of the fertilizer was calculated to be $165.26 for a one-batch operation. If the seed culture was repeated five times, the total product cost could be reduced to $36.39/L. According to this analysis, the reutilization of fish waste as liquid fertilizer was not particularly economically attractive at present, and plant-scale production would be necessary for commercialization. This is the first cost-effectiveness analysis of the bioconversion of fish waste into liquid fertilizer.

Evaluation of cementation of intermediate level liquid waste produced from fission 99Mo production process and disposal feasibility of cement waste form

  • Shon, Jong-Sik;Lee, Hyun-Kyu;Kim, Tack-Jin;Kim, Gi-Yong;Jeon, Hongrae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3235-3241
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) is planning the construction of the KIJANG Research Reactor (KJRR) for stable supply of 99Mo. The Fission 99Mo Production Process (FMPP) of KJRR produces solid waste such as spent uranium cake and alumina cake, and liquid waste in the form of intermediate level liquid waste (ILLW) and low level liquid waste (LLLW). This study thus established the operating range and optimum operating conditions for the cementation of ILLW from FMPP. It also evaluated whether cement waste form samples produced under optimum operational conditions satisfy the waste acceptance criteria (WAC) of a disposal facility in Korea (Korea radioactive waste agency, KORAD). Considering economic feasibility and safety, optimum operational conditions were achieved at a w/c ratio of 0.55, and the corresponding salt content was 5.71 wt%. The cement waste form samples prepared under optimum operational conditions were found to satisfy KORAD's WAC when tested for structural stability and leachability. The results indicate that the proposed cementation conditions for the disposal of ILLW from FMMP can be effectively applied to KJRR's disposal facility.

Characteristics of Anaerobic Degradation on Dewatered Liquid of Household Food Waste. (음식물쓰레기 탈수액의 혐기성 생분해 특성)

  • Kim, Woo-Sung;Seo, Jeoung-Yoon;Lee, Young-Hyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.234-238
    • /
    • 1998
  • Anaerobic degradation characteristics of dewatered liquid of household food waste including methane conversion efficiency and degradation kinetics were studied in an anaerobic batch reactor of 5 L volume. The ultimate methane production for dewatered liquid of household food waste tested was over 0.31L $CH_4/L{\cdot}dewatered$ liquid of household food waste. The kinetic constant of dewatered liquid of household food waste tested was $0.223d^{-1}/L$. The kinetic behavior of anaerobic degradation was described as a first order series reaction. The determinant of rate-limiting step(DR) that is balanced out from the rates of reaction steps was defined by the logarithmic difference of the maximum acidification rate and the maximum methanation rate. Anaerobic degradation characteristics of organic materials were evaluated by the value of DR. The DR of dewatered liquid of household food waste tested was 1.17.

  • PDF

Pretreatment Process for Performance Improvement of SIES at Kori Unit 2 in Korea

  • Lee, Sang-Jin;Yang, Ho-Yeon;Shin, Sang-Woon;Song, Myung-Jae
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.12-27
    • /
    • 2004
  • Pretreatment process consisted of submerged hollow-fiber microfiltration(HMF) membrane and spiral-wound nanofiltration(SNF) membrane has been developed by NETEC, KHNP for the purpose of improving the impurities of liquid radioactive waste before entering Selective Ion Exchange System(SIES). The lab-scale combined system was installed at Kori NPP #2 nuclear power plant and demonstration tests using actual liquid radioactive waste were carried out to verify the performance of the combined system. The submerged HMF membrane was adopted for removal of suspended solid in liquid radioactive waste and the SNF membrane was used for removal of particulate radioisotope such as, Ag-l10m and oily waste because ion exchange resin can not remove particulate radioisotopes. The liquid waste in Waste Holdup Tank (WHT) was processed with HMF and SNF membrane, and SIES. The initial SS concentration and total activity of actual waste were 38,000ppb and $1.534{\times}10_{-3}{\mu}Ci/cc$, respectively. The SS concentration and total activity of permeate were 30ppb and lower than LLD(Lower Limit of Detection), respectively.

  • PDF

국내원전 액체방사성폐기물계통 설계경험

  • 이병식;김길정
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.43-47
    • /
    • 2003
  • The performance of the Radwaste System is measured in terms of generation of waste volumes, the release of radioactive materials to the environment and the occupational radiation exposure to workers. Based on our design and operating experience from PWR plants, various design goals for liquid radwaste system were developed to improve system performance. It has been making continuous effort to develop the advanced liquid radwaste processing technology for new PWR plants since 1998. The primary goal of this effort was to obtain better performance and to design a more economical liquid radwaste system. This paper describes lesson learned experience from design of the liquid radwaste system in Korea Nuclear Power Plants.

  • PDF

A study on decreasing the liquid waste and the liquid waste production status in HANARO (하나로의 액체 폐기물 발생 현황 및 저감 대책)

  • 강태진;황승렬;최호영
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.135-140
    • /
    • 2003
  • The quantity of liquid waste produced during HANARO operation for the years from 1996 to 2002 has been investigated and the interrelation with the reactor power output has been analysed. The waste amount produced during this period was $263, 530{\ell}$ and the processing expense was 81, 690, 000 won. The waste amount and processing expense per reactor power output are $11.38{\ell}/MWD$ and 157 won/MWD, respectively. The waste has been reduced by improving repair work procedure and experiment process in the reactor hall.

  • PDF

Dental Waste Management Practices at Dental Offices in Gyeongsangnam-do (경남지역 치과의원 의료폐기물 관리실태)

  • Kim, Hae-Jin;SaKong, Joon
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.4
    • /
    • pp.332-339
    • /
    • 2012
  • Objectives: The purpose of this study was to prevent health problems and environmental contamination resulting from inappropriate management of dental wastes and to provide reference data for revision and supplementation of dental clinic waste management guidelines. Methods: From 640 total of dental clinics registered in 16 cities and counties in Gyeongsangnam-do, 100 (60 in Changwon (Masan, Changwon), 29 in Gimhae, and 11 in Jinju) were included in this study. From July 2010 to September 2010, investigators visited the 100 dental clinics and conducted survey interviews using a structured survey questionnaire regarding disposal methods for liquid wastes (suction pump, spittoon container waste, used liquid disinfectants, and X-ray developer), and disposal methods for solid waste (suction pump, spittoon container waste, and general medical waste). Results: All the 100 dental clinics were found to treat liquid waste from suction pumps and spittoon containers in the same manner as general waste water. Nineteen percent of the clinics treated solid waste that was not filtered through the filter of a suction pump as general waste. Fifty or more percent of the clinics treated solid waste in spittoon containers as general waste. Seventy percent of the clinics used disinfectant solution, although most of them treated used disinfectants in the same manner as general waste water. Some clinics treated used X-ray developer and X-ray fixer in the same manner as general waste water. In most of the clinics, used drapes were washed within the clinic. Conclusions: It was found that waste water and dental wastes at some dental clinics were treated in inappropriately. Thus, in conclusion, the development of guidelines regarding proper management of liquid and solid dental waste at dental clinics is required, and hygiene and environmental training for workers at dental clinics is necessary.

Cesium and strontium recovery from LiCl-KCl eutectic salt using electrolysis with liquid cathode

  • Jang, Junhyuk;Lee, Minsoo;Kim, Gha-Young;Jeon, Sang-Chae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3957-3961
    • /
    • 2022
  • Deposition behaviors of Sr and Cs in various liquid cathodes, such as Zn, Bi, Cd, and Pb, were examined to evaluate their recovery from LiCl-KCl eutectic salt. Cations in the salt were deposited on the liquid cathode, exhibiting potential of -1.8 to -2.1 V (vs. Ag/AgCl). Zn cathode had successful deposition of Sr and exhibited the highest recovery efficiency, up to 55%. Meanwhile, the other liquid cathodes showed low current efficiencies, below 18%, indicating LiCl-KCl salt decomposition. Sr was recovered from the Zn cathode as irregular rectangular SrZn13 particles. A negligible amount of Cs was deposited on the entire liquid cathode, indicating that Cs was hardly deposited on liquid cathodes. Based on these results, we propose that liquid Zn cathode can be used for cleaning Sr in LiCl-KCl salt.