• Title/Summary/Keyword: Liquid transfer

Search Result 1,331, Processing Time 0.03 seconds

TRANSFORMER EXPLOSION AND FIRE PREVENTION (변압기 폭발/화재 방지 기술)

  • Kim, Hyung-Seung;Magnier, Philippe
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.93-94
    • /
    • 2007
  • An essential step for SERGI is to show the TRANSFORMER PROTECTOR (TP) efficacy for all transformers and all types of rupture of insulation. Its research program philosophy is thus to maintain a strong connection between experiments and the theoretical developments. Up to now, two TP test campaigns have been performed, both under the worst conditions by creating low impedance faults leading to electrical arcs inside the transformer tank dielectric oil. In 2002, Electricite de France performed 28 TP tests. Then, in 2004, a second campaign of 34 TP tests was carried out by CEPEL, the Brazilian independent High Voltage Laboratory. For the 62 tests, each transformer was equipped with the TP, which reacts directly to the moving dynamic pressure peak, shock wave, caused by the low impedance fault. When an electrical arc occurs, only one pressure peak is generated. The initial energy transfer is almost instantaneous, and so is the phase change. Because of the oil inertia, the gas is very quickly pressurised. As it is more difficult to vaporise a liquid than to crack oil-vapour into smaller molecules, the arc location would mainly remain in the gaseous phase after and less gas will be produced. As a result, when comparing tests for which pressure peaks are respectively equal to 8 bar (116 psi) and 8.8 bar (127 psi), the corresponding arc energies vary by an order 10 of magnitude (0.1 MJ and 1 MJ respectively). The correlation of the results obtained between arc energy and dynamic pressure demonstrates that the arc energy is not the key parameter during transformer tank explosion, which is in opposition with the common electrical engineers belief.

  • PDF

Enhanced Development and Germination of Carrot Somatic Embryos on Modified Surface of Medium (당근체세포배의 발생 및 발아에 미치는 배지표면의 물리적변화)

  • SOH, Woong-Young;LEE, Eun-Kyong;CHO, Duck-Yee
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.231-236
    • /
    • 1998
  • Carrot cotyledon explants cultured on MS medium with 1 mg/L 2,4-D were transferred to a hormone-free solid medium overlaid with filter paper in order to elucidate the effect of simple physical treatment on the development and germination of somatic embryos. Transfer of the explants cultured for one week on MS basal medium overlaid with 3 sheets of filter paper on to MS basal medium increased somatic embryo production 2-39 times over the one week culture on medium without filter paper overlay. Maturation and germination of somatic embryos was more prominent on medium overlaid with filter paper than on medium without filter paper. The explants cultured for one week on filter paper overlay added with liquid medium showed prominent decrease in somatic embryo formation compared to filter paper overlay only. It is suggested that the filter paper overlay affected the moisture environment of the somatic embryos developing on it.

  • PDF

Genetic Transformation and Plant Regeneration of Codonopsis lanceolata Using Agrobacterium (Agrobacterium에 의한 더덕의 형질전환과 식물체 재분화)

  • 최필선;김윤성;유장렬;소웅영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.315-318
    • /
    • 1994
  • To obtain transformed plants, we cocultured cotyledonary explants of Codonopsis lanceolata with Agrobacterium tumefaciens LBA4404, a disamed strain harboring a binary vector pBI121 carrying the CaMV35S promoter-$\beta$-glucuronidase (GUS) gene fusion used as a reporter gene and NOS promoter-neomycin phosphotransferase gene as a positive selection marker in MS liquid medium with 1mg/L BA. After 48 h of culture, explants were transferred onto MS solid medium with Img/L BA, 250mg/L carbenicillin, and 100mg/L kanamycin sulfate and cultured in the dark. Numerous adventitious buds formed on the cut edges of the explants after 2 weeks of culture. When subjected to GUS histochemical assay buds showed a positive response at a frequency of 15%. Explants formed adventitious shoot at a frequency of 56.7%, after 6 weeks of culture. Upon transfer onto the basal medium, most of the shoots were rooted and subsequently the regenerants were transplanted to potting soil. Southern blot analysis confirmed that the GUS gene was incorporated into the genomic DNA of the GUS-positive regenerants.

  • PDF

Somatic Embryogenesis and Plant Regeneration in Mature Seed Cultures and Seed-Derived Embryogenic Suspension Cultures of Yuzu (유자의 성숙종자 배양 및 종자유래 배발생 현탁배양으로부터 체세포배발생을 통한 유자의 식물체 재생)

  • Min, Sung-Ran;Choi, Myung-Suk;Jeong, Won-Joong;Liu, Jang-Ryol
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.185-188
    • /
    • 2002
  • Off-white, friable embryogenic calluses were formed on the internal integument of mature seeds of yuzu (Citrus junos) cultured on Murashige and Skoog's basal medium at a frequency of 1.2%. Embryogenic calluses were proliferated when cultured on medium with 1 mg/L 2,4-D. Upon transfer to medium with 0.1 mg/L kinetin, embryogenic calluses produced numerous somatic embryos. Embryogenic suspension cultures were established by placing embryogenic calluses into liquid medium with 1 mg/L 2,4-D. When plated onto medium with 0.5 mg/L ABA, embryogenic cells developed into somatic embryos at a high frequency, and then regenerated into plantlets. Plantlets were successfully transplanted to potting soil and grown in a greenhouse.

The Usefulness of Immunocytochemistry of CD56 in Determining Malignancy from Indeterminate Thyroid Fine-Needle Aspiration Cytology

  • Cha, Hyunseo;Pyo, Ju Yeon;Hong, Soon Won
    • Journal of Pathology and Translational Medicine
    • /
    • v.52 no.6
    • /
    • pp.404-410
    • /
    • 2018
  • Background: Fine-needle aspiration cytology serves as a safe, economical tool in evaluating thyroid nodules. However, about 30% of the samples are categorized as indeterminate. Hence, many immunocytochemistry markers have been studied, but there has not been a single outstanding marker. We studied the efficacy of CD56 with human bone marrow endothelial cell marker-1 (HBME-1) in diagnosis in the Bethesda System for Reporting Thyroid Cytopathology (TBSRTC) category III. Methods: We reviewed ThinPrep liquid-based cytology (LBC) samples with Papanicolaou stain from July 1 to December 31, 2016 (2,195 cases) and selected TBSRTC category III cases (n=363). Twenty-six cases were histologically confirmed as benign (six cases, 23%) or malignant (20 cases, 77%); we stained 26 LBC slides with HBME-1 and CD56 through the cell transfer method. For evaluation of reactivity of immunocytochemistry, we chose atypical follicular cell clusters. Results: CD56 was not reactive in 18 of 20 cases (90%) of malignant nodules and showed cytoplasmic positivity in five of six cases (83%) of benign nodules. CD56 showed high sensitivity (90.0%) and relatively low specificity (83.3%) in detecting malignancy (p=.004). HBME-1 was reactive in 17 of 20 cases (85%) of malignant nodules and was not reactive in five of six cases (83%) of benign nodules. HBME-1 showed slightly lower sensitivity (85.0%) than CD56. The specificity in detecting malignancy by HBME-1 was similar to that of CD56 (83.3%, p=.008). CD56 and HBME-1 tests combined showed lower sensitivity (75.0% vs 90%) and higher specificity (93.8% vs 83.3%) in detecting malignancy compared to using CD56 alone. Conclusions: Using CD56 alone showed relatively low specificity despite high sensitivity for detecting malignancy. Combining CD56 with HBME-1 could increase the specificity. Thus, we suggest that CD56 could be a useful preoperative marker for differential diagnosis of TBSRTC category III samples.

An Experimental Study on Pressure Loss in Straight Cooling Channels (직선형 냉각채널에서의 압력손실에 대한 실험적 연구)

  • Yoon, Wonjae;Ahn, Kyubok;Kim, Hongjip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • A regeneratively-cooled channel in a liquid rocket engine is used to effectively cool a combustion chamber inner wall from hot combustion gas, and the heat transfer/pressure loss characteristics should be predicted in advance to design cooling channels. In the present research, five cooling channels with different geometric dimensions were designed and the channels were respectively manufactured using cutter and endmill. By changing coolant velocity and downstream pressure, the effects of manufacturing method, channel shape, and flow condition on pressure losses were experimentally investigated and the results were compared with the analytical results. At same channel shape and flow condition, the pressure loss in the channel machined by the cutter was lower than that by the endmill. It was also found that the pressure loss ratio between the experimental result and the analytical data changed with the channel shape and flow condition.

A Study on the Chilling Start-up Characteristics and Performance of a Gas Loaded Heat Pipe (가스내장 히트파이프의 냉시동특성과 성능에 관한 연구)

  • Hong, Sung-Eun;Kang, Hwan-Kook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.915-922
    • /
    • 2006
  • Considering heat pipe design principles in fabrication and operational performances, water is one of the most recommended working fluids to make mid to low tempera lure heat pipes. But the conventional water heat pipes might encounter the failure in a cold start-up operation when socked at a chilling temperature lower than the freezing point. If they are subjected to a heat supply for start-up at a temperature around $-20^{\circ}C$, the rate of the vapor flow and the corresponding heat transfer from the evaporator to the condenser is so small that the vapor keeps to stick on the surface of the chilling condenser wall, forming an ice layer, resulting in a liquid deficiency in the evaporator. This kind of problems was resolved by Kang et al. in 2004 by adopting a gas loading heat pipe technology to the conventional water heat pipes. This study was conducted to examine a chilling start-up procedure of gas loading heat pipes by investigating the behaviors of heat pipe wall temperatures. And the thermal resistance of the gas loaded heat pipe that depends on the operating temperatures and heat loads was measured and examined. Two water heat pipes were designed and fabricated for the comparison of performances, one conventional and the other loaded with $N_2$ gas. They were put on start-up test at a heat supply of 30 W after having been socked at an initial temperature around $-20^{\circ}C$. It was observed that the gas loaded one had succeeded in chilling start-up operation.

MULTI-SCALE MODELING AND ANALYSIS OF CONVECTIVE BOILING: TOWARDS THE PREDICTION OF CHF IN ROD BUNDLES

  • Niceno, B.;Sato, Y.;Badillo, A.;Andreani, M.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.620-635
    • /
    • 2010
  • In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso-scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian $2^{nd}$ order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program.

Numerical investigation of the critical heat flux in a 5 × 5 rod bundle with multi-grid

  • Liu, Wei;Shang, Zemin;Yang, Shihao;Yang, Lixin;Tian, Zihao;Liu, Yu;Chen, Xi;Peng, Qian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1914-1928
    • /
    • 2022
  • To improve the heat transfer efficiency of the reactor fuel assembly, it is necessary to accurately calculate the two-phase flow boiling characteristics and the critical heat flux (CHF) in the fuel assembly. In this paper, a Eulerian two-fluid model combined with the extended wall boiling model was used to numerically simulate the 5 × 5 fuel rod bundle with spacer grids (four sets of mixing vane grids and four sets of simple support grids without mixing vanes). We calculated and analyzed 11 experimental conditions under different pressure, inlet temperature, and mass flux. After comparing the CHF and the location of departure from the nucleate boiling obtained by the numerical simulation with the experimental results, we confirmed the reliability of computational fluid dynamic analysis for the prediction of the CHF of the rod bundle and the boiling characteristics of the two-phase flow. Subsequently, we analyzed the influence of the spacer grid and mixing vanes on the void fraction, liquid temperature, and secondary flow distribution. The research in this article provides theoretical support for the design of fuel assemblies.

A Numerical Study on the Flame Arrestor for Safety Valve of Hydrogen (수소 안전밸브용 역화방지기의 성능 평가에 대한 수치해석 연구)

  • OH, SEUNG JUN;YOON, JEONG HWAN;KIM, SI POM;CHOI, JEONGJU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.391-399
    • /
    • 2022
  • Hydrogen is one of the energy carriers and has high energy efficiency relative to mass. It is an eco-friendly fuel that makes only water (H2O) as a by-product after use. In order to use hydrogen conveniently and safely, development of production, storage and transfer technologies is required and attempts are being made to apply hydrogen as an energy source in various fields through the development of the technology. For transporting and storing hydrogen include high-pressure hydrogen gas storage, a type of storage technologies consist of cryogenic hydrogen liquid storage, hydrogen storage alloy, chemical storage by adsorbents and high-pressure hydrogen storage containers have been developed in a total of four stages. The biggest issue in charging high-pressure hydrogen gas which is a combustible gas is safety and the backfire prevention device is that prevents external flames from entering the tank and prevents explosion and is essential to use hydrogen safely. This study conducted a numerical analysis to analyze the performance of suppressing flame propagation of 2, 3 inch flame arrestor. As a result, it is determined that, where the flame arrestor is attached, the temperature would be lowered below the temperature of spontaneous combustion of hydrogen to suppress flame propagation.