• Title/Summary/Keyword: Liquid transfer

Search Result 1,331, Processing Time 0.026 seconds

Study Characteristics in Packed Tower of Liquid Desiccant Solar Cooling System Using Counter Flow Configuration

  • Rahmanto, R. Hengki;Choi, K.H.;Agung, B.;Sukmaji, I.C.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.168-174
    • /
    • 2009
  • High water vapour content in air can cause a number of problems as for human or surrounding materials. For human a high water vapour can create physiological stress, discomfort, and also can encourage ill health. While, the cause for the environment is can accelerate the corrosion of metals, accelerate the growth of spores and mould, can reduce the electrical resistance of insulators and etc. Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling especially the latent load and also sensible load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed tower of liquid desiccant solar cooling system and the heat transfer and mass transfer will occur. This thesis is trying to study the characteristics inside the packed tower of dehumidifier systems. This characteristics consist of mass transfer rate, heat transfers rate, human comfort and energy that consume by the system. Those characteristics were affected by air flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems. The results of this thesis later on can be used to determine the best performance of the systems.

  • PDF

Experimental investigations and development of mathematical model to estimate drop diameter and jet length

  • Roy, Amitava;Suneel, G.;Gayen, J.K.;Ravi, K.V.;Grover, R.B.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3229-3235
    • /
    • 2021
  • The key process used in nuclear industries for the management of radiotoxicity associated with spent fuel in a closed fuel cycle is solvent extraction. An understanding of hydrodynamics and mass transfer is of primary importance for the design of mass transfer equipment used in solvent extraction processes. Understanding the interfacial phenomenon and the associated hydrodynamics of the liquid drops is essential for model-based design of mass transfer devices. In this work, the phenomenon of drop formation at the tip of a nozzle submerged in quiescent immiscible liquid phase is revisited. Previously reported force balance based models and empirical correlations are analyzed. Experiments are carried out to capture the process of drop formation using high-speed imaging technique. The images are digitally processed to measure the average drop diameter. A correlation based on the force balance model is proposed to estimate drop diameter and jet length. The average drop diameter obtained from the proposed model is in good agreement with experimental data with an average error of 6.3%. The developed model is applicable in both the necking as well as jetting regime and is validated for liquid-liquid systems having low, moderate and high interfacial tension.

Evaporation Heat Transfer Characteristics of Liquid Nitrogen in Horizontal Plain Tubes with Wire Coil Inserts (평활관 및 열전달촉진관에서 액체질소의 관내 증발열전달 특성에 대한 연구)

  • Hwang, Jee-Sang;Chung, Jin-Taek;Yun, Rin;Kim, Yong-Chan;Moon, Young-June;Kim, Dong-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1359-1364
    • /
    • 2004
  • An experiment was performed to study the evaporation heat transfer and the pressure drop characteristics of liquid nitrogen in a horizontal stainless steel tube with wire coil inserts. The inner diameter of test tube is 4.3mm and the length is 1.5m. Four wire coils having different pitch and thickness were inserted into the plain test tube. The wire coil length is 1.5m and the diameter is 3.65mm with thickness of 0.5mm and 0.9mm. Experiments were conducted at saturation temperature of $-191^{\circ}C$ mass flux from 200 to 370 $kg/m^{2}s$ and heat flux of 62 $kW/m^{2}$. Direct heating method was used to apply heat to the test section. Boiling heat transfer coefficients of both the plain and the enhanced tubes were calculated. Pressure drops between inlet and outlet side of test section were also measured, and they are used to estimate EPR(Enhancement Performance Ratio).

  • PDF

Quantification of Oxygen Transfer in Test Tubes by Integrated Optical Sensing

  • Wittmann, Christoph;Schutz, Verena;John, Gernot;Heinzle, Elmar
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.991-995
    • /
    • 2004
  • Immobilized sensor spots were applied for online measurement of dissolved $O_2$, in test tubes. Oxygen transport was quantified at varied shaking frequency and filling volumes. The k$_{L}$ a increased with increasing shaking frequency and decreasing filling volume. In non-baffled tubes the maximum $k_{L}a$ value was $70h^{-1}$, equivalent to a maximum $O_2$ transfer capacity of 15mMh^{-1}$. Monitoring of the hydrodynamic profile revealed that the liquid bulk rotated inside the tube with an inclined liquid surface, whereby the angle between the surface and tube wall increased with increasing shaking frequency. The $k_{L}a$ clearly correlated to the surface area. Placement of four baffles into the tubes improved the oxygen transfer up to 3-fold. The highest increase in $k_{L}a$ was observed at high filling volume and high shaking frequency. The maximum $k_{L}a$ in baffled tubes was $100 h^{-1}$.

Design of Cooling Channels of Preburners for Small Liquid Rocket Engines with Computational Flow and Heat Transfer Analysis

  • Moon, In-Sang;Lee, Seon-Mi;Moon, Il-Yoon;Yoo, Jae-Han;Lee, Soo-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.233-239
    • /
    • 2011
  • A series of computational analyses was performed to predict the cooling process by the cooling channel of preburners used for kerosene-liquid oxygen staged combustion cycle rocket engines. As an oxygen-rich combustion occurs in the kerosene fueled preburner, it is of great importance to control the wall temperature so that it does not exceed the critical temperature. However, since the heat transfer is proportional to the speed of fluid running inside the channel, the high heat transfer leads to a trade-off of pressure loss. For this reason, it is necessary to establish a certain criteria between the pressure loss and the heat transfer or the wall surface temperature. The design factors of the cooling channel were determined by the computational research, and a test model was manufactured. The test model was used for the hot fire tests to prove the function of the cooling mechanism, among other purposes.

An Experimental Study on the Effects of Porous Layer Treatment on Evaporative Cooling of an Inclined Surface (다공물질 표면처리가 경사판의 증발냉각에 미치는 영향에 관한 실험적 연구)

  • Lee Dae Young;Lee Jae Wan;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • Falling film heat transfer has been widely used in many applications in which heat and mass transfer occur simultaneously, such as evaporative coolers, cooling towers, absorption chillers, etc. In such cases, it is desirable that the falling film spreads widely on the surface forming thin liquid film to enlarge contact surface and to reduce the thermal resistance across the film and/or the flow resistance to the vapor stream over the film. In this work, the surface is treated to have thin porous layer on the surface. With this treatment, the liquid can be spread widely on the surface by the capillary force resulting from the porous structure. In addition to this, the liquid can be held within the porous structure to improve surface wettedness regardless of the surface inclination. The experiment on the evaporative cooling of an inclined surface has been conducted to verify the effectiveness of the surface treatment. It is measured that the evaporative heat transfer increases about $50\%$ by the porous layer treatment as compared with that from orignal bare surfaces.

Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (II) (수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향)

  • Kim, Byeong-Ju;Lee, Chan-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.499-509
    • /
    • 1998
  • In the absorption process of water vapor in a liquid film, the composition of the gas phase, in which a non-absorbable gas is combined with the absorbate influences the transport characteristics remarkably. In the present study, the absorption processes of water vapor into aqueous solution of lithium bromide in the presence of non-absorbable gases were investigated analytically. The continuity, momentum, energy and diffusion equations for the solution film and gas phase were formulated in integral forms and solved numerically. It was found that the mass transfer resistance in gas phase increased with the concentration of non-absorbable gas. However the primary resistance to mass transfer was in the liquid phase. As the concentration of non-absorbable gas in the absorbate increased, the liquid-vapor interfacial temperature and concentration of absorbate in solution decreased, which resulted in the reduction of absorption rate. The reduction of mass transfer rate was found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of an absorber where non-absorbable gases accumulated. At higher non-absorbable gas concentration, the decrease of absorption flux was almost linear to the volumetric concentration of non-absorbable gas.

Measurement of the Local Heat Transfer Coefficient on a Concave Surface with a Turbulent round Impinging Jet (오목표면에 분사되는 난류원형충돌제트에 대한 국소열전달계수 측정에 관한 연구)

  • Lim, K.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.112-119
    • /
    • 1995
  • Measurements of the local heat transfer coeffcients on a spherically concave surface with a round impinging jet are presented. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystals for the measurement of the surface temperature. The Reynolds numbers used were 1,000, 23,000 and 50,000 and the nozzle-to-jet distance was L/d=2, 4, 6, 8, 10. Presented results are compared to previous measurements for flat plate. In the experiment, the local heat transfer Nusselt numbers on a concave surface are higher than those on a flat plate. Maximum Nusselt number at all region occured at L/d=6 and second maximum in the Nusselt number occured at R/d=2 for both Re=50,000 and Re=23,000 in case of L/d=2 and for only Re=50,000 in case of L/d=4. All other cases exhibit monotonically decreasing value of the Nusselt number along the curved surface.

  • PDF

An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification

  • Faisal, Shaikh Nayeem;Hossain, Md. Mokarrom;Lee, Hye-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • An amperometric ascorbic acid selective sensor utilizing the transfer reaction of proton liberated from the dissociation of ascorbic acid in aqueous solution across an elliptic micro-hole water/organic gel interface is demonstrated. This redox inactive sensing platform offers an alternative way for the detection of ascorbic acid to avoid a fouling effect which is one of the major concerns in redox based sensing systems. The detection principle is simply measuring the current change with respect to the assisted transfer of protons by a proton selective ionophore (e.g., ETH 1778) across the micro-hole interface between the water and the polyvinylchloride-2-nitrophenyloctylether gel phase. The assisted transfer reaction of protons generated from ascorbic acid across the polarized micro-hole interface was first characterized using cyclic voltammetry. An improved sensitivity for the quantitative analysis of ascorbic acid was achieved using differential pulse stripping voltammetry with a linear response ranging from 1 to $100\;{\mu}M$ concentrations of ascorbic acid. As a demonstration, the developed sensor was applied for analyzing the content of vitamin-C in different types of commercial pharmaceutical tablets and syrups, and a satisfactory recovery from these samples were also obtained.

A Study on Anti-Icing Design by Conjugate Heat Transfer Analysis in a Lab-Scale Printed Circuit Heat Exchanger for Supply of Cryogenic High Pressure Liquid Hydrogen (극저온 고압액체수소 공급을 위한 실험실 규모 인쇄기판 열교환기의 복합열전달 해석을 통한 방빙설계에 관한 연구)

  • SOHN, SANGHO;KIM, WOOKYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.541-549
    • /
    • 2022
  • This study investigates anti-icing design by conjugate heat transfer analysis in lab-scale printed circuit heat exchanger (PCHE) for supply of cryogenic high pressure liquid hydrogen. The conjugate heat transfer analysis by using computational dynamics (CFD) provided various temperature distributions at important locations in PCHE heat exchanger and predicted the possibility of freezing in hot channel. And, the effect of inlet temperature of glycol water was analyzed in order to resolve the freezing problem in PCHE.