• Title/Summary/Keyword: Liquid sensor

Search Result 316, Processing Time 0.022 seconds

A study on prediction of oil concentration in the R-407C and R-410A refrigeration system (대체냉매 R-407C와 R-410A를 사용하는 냉동시스템의 오일농도 예측에 관한 연구)

  • 이종문;김창년;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.384-390
    • /
    • 1999
  • A vibrating U-Tube decimeter has been evaluated as a sensor for measuring the concentration of oil in the liquid line of a refrigeration system. Calibration and performance tests were conducted under simulated liquid-line conditions for R-407C/POE oil and R-410A/POE oil mixtures in oil concentration from 0 to 15 weight percent. Test temperatures ranged from 20 to 5$0^{\circ}C$. As a result of test, oil concentration correlations are presented in terms of specific gravity at each constant temperature. These equations enable to predict the oil concentration without any extraction of the mixture, and can be applied for R-407C/POE oil and R-410A/POE oil mixtures.

  • PDF

Fault Detection and Diagnosis of the Deaerator Level Control System in Nuclear Power Plants

  • Kim Kyung Youn;Lee Yoon Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.73-82
    • /
    • 2004
  • The deaerator of a power plant is one of feedwater heaters in the secondary system, and it is located above the feedwater pumps. The feedwater pumps take the water from the deaerator storage tank, and the net positive suction head(NSPH) should always be ensured. To secure the sufficient NPSH, the deaerator tank is equipped with the level control system of which level sensors are critical items. And it is necessary to ascertain the sensor state on-line. For this, a model-based fault detection and diagnosis(FDD) is introduced in this study. The dynamic control model is formulated from the relation of input-output flow rates and liquid-level of the deaerator storage tank. Then an adaptive state estimator is designed for the fault detection and diagnosis of sensors. The performance and effectiveness of the proposed FDD scheme are evaluated by applying the operation data of Yonggwang Units 3 & 4.

Characterization of degree of alignment of polymer microfibers electrospun on a rotating water collector

  • Li, Shichen;Lee, Bong-Kee
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.125-130
    • /
    • 2021
  • In this study, the degree of alignment of polymer microfibers produced by electrospinning using a rotating water collector was evaluated. Aligned micro- and nano-fibers are required in various practical applications involving anisotropic properties. The degree of fiber alignment has many significant effects; hence, and accurate quantitative analysis of fiber alignment is necessary. Therefore, this study developed a simple and efficient method based on two-dimensional fast Fourier transform, followed by ellipse fitting. As a demonstrative example, the polymer microfibers were electrospun on the rotating water collector as the alignment of microfibers can be easily controlled. The analysis shows that the flow velocity of the liquid collector significantly affects the electrospun microfiber alignment, that is, the higher the flow velocity of the liquid collector, the greater is the degree of microfiber alignment. This method can be used for analyzing the fiber alignment in various fields such as smart sensors, fibers, composites, and textile engineering.

The electro-optical characteristics of PDLC (PDLC의 전기광학적 특성)

  • Kim, Won-Jae;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.432-436
    • /
    • 1998
  • Recently, the PDLC(Polymer Dispersed Liquid Crystal) is being developed lively to make a large display device using a liquid crystal. Because of low light loss, high brightness, and simple fabrication process, it is made easily to large display device, In this study, the response time and light transmittance by the applied voltage is measured to analyze the electro-optical characteristics of PDLC. The He-Ne laser is applied to the PDLC cell, the light transmittance is measured using the photodiode and the result is analyzed and displayed graphically by the digital oscilloscope. The result of comparison between the PDLC and the present LCD is used to study the potential as a display device.

  • PDF

Dynamic Analysis of the PDLC-based Electro-Optic Modulator for Fault Identification of TFT-LCD (박막 트랜지스터 기판 검사를 위한 PDLC 응용 전기-광학 변환기의 동특성 분석)

  • 정광석;정대화;방규용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.92-102
    • /
    • 2003
  • To detect electrical faults of a TFT (Thin Film Transistor) panel for the LCD (Liquid Crystal Display), techniques of converting electric field to an image are used One of them is the PDLC (polymer-dispersed liquid crystal) modulator which changes light transmittance under electric field. The advantage of PDLC modulator in the electric field detection is that it can be used without physically contacting the TFT panel surface. Specific pattern signals are applied to the data and gate electrodes of the panel to charge the pixel electrodes and the image sensor detects the change of transmittance of PDLC positioned in proximity distance above the pixel electrodes. The image represents the status of electric field reflected on the PDLC so that the characteristic of the PDLC itself plays an important role to accurately quantify the defects of TFT panel. In this paper, the image of the PDLC modulator caused by the change of electric field of the pixel electrodes on the TFT panel is acquired and how the characteristics of PDLC reflect the change of electric field to the image is analyzed. When the holding time of PDLC is short, better contrast of electric field image can be obtained by changing the instance of applying the driving voltage to the PDLC.

pH Measurements with a Microcantilever Array-Based Biosensor System

  • Hur, Shin;Jung, Young-Do
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.186-191
    • /
    • 2012
  • In this paper, we present a pH measurement method that uses a microcantilever-array-based biosensor system. It is composed of microcantilever array, liquid cell, micro syringe pump, laser diode array, position sensitive detector, data acquisition device, and data processing software. Four microcantilevers are functionalized with pH-sensitive MHA(mercaptohexadecanoic acid) as a probe, while three microcantilevers are functionalized with HDT(hexadecane thiol) as reference. We prepare PBS(phosphate buffered saline) solutions of different pH and inject them into the liquid cell with a predefined volumetric speed at regular time intervals. The functionalized mircocantilevers in the liquid cell deflect as a self-assembled monolayer on the microcantilever binds with probe molecules in the solution. The difference in deflection between the MHA-covered probe microcantilever and the HDT-covered reference microcantilever was used to compensate for thermal drift. The deflection difference clearly increases with increasing pH in the solution. It was shown that when the pH values of the PBS solutions are high, there were large variations in the deflection of microcantilevers, whereas there were small variations for low pH value. The experimental results show that the microcantilever array functionalized with MHA and HDT can detect pH value with good repeatability.

High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1093-1098
    • /
    • 2017
  • High frequency signals are analyzed which are measured at the inlet / outlet pipeline and pump casing during cavitation tests of the LOx pump for the liquid rocket engine. RMS values of data are shown according to the cavitation number. RMS values of the synchronous frequency, its harmonic frequencies and frequencies of cavitation instabilities are also calculated. The pressure pulsations of the inlet and outlet pipeline are affected by cavitation instabilities. 3x component is predominant in the outlet pulsation sensor since 3x component generated at the inducer is amplified at the impeller. The cavitation instability is also found at the accelerometer signal of the casing.

  • PDF

High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes (독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터)

  • Kim, Dong Won;Jung, Hyunyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.

Operational Characteristic of Liquid Rocket Engine by Cavitation Instability at Low Inlet Pressure Condition (낮은 입구압력 조건에서 캐비테이션 불안정성에 의한 액체로켓엔진의 작동 특성)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.93-100
    • /
    • 2020
  • The turbopump of the liquid rocket engine adapts an inducer to minimize the cavitation due to the variations of the propellants supply condition. However, the inducer introduces cavitation instabilities which are well-known problems in the engine development. In this paper, operational characteristics by the cavitation instabilities are analyzed and the reliability of the engine is checked when the first stage engine of the KSLV-II is tested at the low inlet pressure conditions. The characteristic frequencies representing the cavitation instabilities of the LOx pump are clearly found in various high frequency sensor signals around the entire engine in addition to the LOx and fuel pump.

Performance test and uncertainty analysis of the FBG-based pressure transmitter for liquid metal system

  • Byeong-Yeon KIM;Jewhan LEE;Youngil CHO;Jaehyuk EOH;Hyungmo KIM
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4412-4421
    • /
    • 2022
  • The pressure measurement in the high-temperature liquid metal system, such as Sodium-cooled Fast Reactor(SFR), is important and yet it is very challenging due to its nature. The measuring pressure is relatively at low range and the applied temperature varies in wide range. Moreover, the pressure transfer material in impulse line needs to considered the high temperature condition. The conventional diaphragm-based approach cannot be used for it is impossible to remove the effect of thermal expansion. In this paper, the Fiber Bragg Grating(FBG) sensor-based pressure measuring concept is suggested that it is free of problems induced by the thermal expansion. To verify this concept, a prototype was fabricated and tested in an appropriate conditions. The uncertainty analysis result of the experiment is also included. The final result of this study clearly showed that the FBG-based pressure transmitter system is applicable to the extreme environment, such as SFR and any other high-temperature liquid metal system and the measurement uncertainty is within reasonable range.