• 제목/요약/키워드: Liquid phase sintered SiC

검색결과 71건 처리시간 0.027초

액상소결단계에서 $SiO_2-Si$의 미세조직 변화 (Microstructural Changes of $SiO_2-Si$ During Liquid-Phase Sintering)

  • 강대갑;정충환
    • 한국세라믹학회지
    • /
    • 제31권4호
    • /
    • pp.443-447
    • /
    • 1994
  • Compacts of mixed SiO2-Si powder were liquid phase sintered at 145$0^{\circ}C$ for up to 60 min in a hydrogen atmosphere. In contrast to the conventional microstructures of liquid phase sintered materials, the specimens showed that the solid phase of SiO2 formed a matrix while the liquid phase of Si was the dispersed in the solid matrix. The dispersion of liquid Si pockets was attributed to the high wetting angle of liquid Si on solid SiO2. Because of relatively high solubility of SiO2 in liquid Si at 145$0^{\circ}C$, SiO2 particles accommodated their shape via a solution-reprecipitation process. The liquid Si pockets grew by coalescing with their neighbour pockets. In the latter stage of the sintering, plate-shape grains appeared in the liquid Si pockets. The grains were SiO2 phase precipitated from the liquid Si which was oversaturated with oxygen during cooling to room temperature. By the formation and subsequent removal of the gaseous SiO phase due to the reaction between SiO2 and Si, the specimens became porous.

  • PDF

상압소결 $\beta$-SiC에 있어서 표면부에서의 액상집중과 미세구조의 변화 (Concentration of Liquid-phase in the Surface Region and Microstructural Change in Pressureless Sintered$\beta$-SiC)

  • 이종국;양권승;김환
    • 한국세라믹학회지
    • /
    • 제33권8호
    • /
    • pp.921-927
    • /
    • 1996
  • The liquid-phase concentration from the interior to the surface region and its influence on the microstructural changes were investigated in pressureless sintered $\beta$-SiC Surface reaction-layer was formed by reaction of packing powder and volatile components on the surface during sintering which was induced the concentration of liquid-phase in the surface regions. The microstructural changes between the surface region and the interior were appeared in sintered specimen which was resulted from the difference of liquid-phase content during sintering. Microstructural changes were observd with the depth of about 250${\mu}{\textrm}{m}$ from he surface. The grain size and aspect ratio of SiC in the interior are larger than those in the surface region and the rate of transforma-tion of $\beta$-to $\alpha$-SiC during sintering is higher in the interior than that in the surface region.

  • PDF

액상량이 탄화규소 소결체의 미세구조 및 상변태에 미치는 영향 (Influence of Liquid-Phase Amount on the Microstructure and Phase Transformation of Liquid-phase Sintered Silicon Carbide)

  • 이종국;강현희;박종곤;이은구
    • 한국세라믹학회지
    • /
    • 제35권4호
    • /
    • pp.413-419
    • /
    • 1998
  • ${\beta}$-silicon carbides with yttrium aluminum garnet of 2,5,10 mol% were prepared by a liquid--phase sint-ering and the microstructural evolution and phase transformation were investigated during sintering as functions of liquid-phase amount and sintering time. The rate of grain growth decreases with the addition of the amount of yttrium aluminum garnet (YAG) in the SiC starting powder however the apparent density and the aspect ratio of grains in sintered body increase. The phase transformation from ${\beta}$-SiC to ${\alpha}$-SiC were dependent on the liquid-phase amount and sintering time.

  • PDF

Possible Strategies for Microstructure Control of Liquid-Phase-Sintered Silicon Carbide Ceramics

  • Chun, Yong-Seong;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.542-547
    • /
    • 2005
  • Keys to the attainment of tailored properties in SiC ceramics are microstructure control and judicious selection of the sintering additives. In this study, three different strategies for controlling microstructure of liquid-phase-sintered SiC ceramics (LPS-SiC) have been suggested: control of the initial $\alpha-SiC$ content in the starting powder, a seeding technique, and a post-sintering heat treatment. The strategies suggested offer substantial flexibility for producing toughened SiC ceramics whereby grain size, grain size distribution, and aspect ratio can be effectively controlled. The present results suggest that the proposed strategies are suitable for the manufacture of toughened SiC ceramics with improved toughness.

액상소결 $SiC_f$/SiC 복합재료의 미세조직 및 강도특성 (Microstructure and Strength Property of Liquid Phase Sintered $SiC_f$/SiC Composites)

  • 이문희;조경서;이상필;이진경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.234-238
    • /
    • 2008
  • The efficiency of fiber reinforced CMC(ceramic matrix composite) on the SiC materials have been investigated, in conjunction with the fabrication process by liquid phase sintering and the characterization. LPS-$SiC_f$/SiC composites was studied with the detailed analysis such as the microstructure, sintered density, flexural strength and fracture behavior. The applicability of carbon interfacial layer has been also investigated in the LPS process. Submicron SiC powder with the constant total amount and composition ratio of $Al_2O_3,\;Y_2O_3$ as sintering additives was used in order to promote the performance of the SiC matrix material. LPS-$SiC_f$/SiC composites were fabricated with hot press under the sintering temperature and applied pressure of $1820^{\circ}C$ and 20MPa for 1hr. The typical property of monolithic LPS-SiC materials was compared with LPS-$SiC_f$/SiC composites.

  • PDF

시알론을 첨가한 탄화규소 세라믹스의 제조 (Preparation of Silicon Carbide with Sialon)

  • 이종국;박종곤;이은구;김환
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.247-255
    • /
    • 2000
  • Silicon carbide with sialon was prepared by hot pressing and transient liquid-phase sintering, and the effects of sintering atmosphere and starting phases on their microstructural characteristics were investigated. The sintered SiC with Sialon composition(Y2O3, AlN, Si3N4) in argon atmosphere had high sintered density and large aspect ratio. But sintered specimens in nitrogen atmosphere showed low aspect ratio and small grian size, becuase of the retardation of phase transformation and grain growth. Addition of Y-Sialon powder to SiC also retarded the phase transformation to ${\alpha}$-SiC from ${\beta}$-SiC and densification. The SiC specimen prepared from the starting ${\beta}$-SiC powder with Sialon composition(Y2O3, AlN, Si3N4) showed the highest fracture toughness about 6.0 MPa$.$m1/2.

  • PDF

액상소결 탄화규소 세라믹스의 제조 및 고온기계적 특성 (Fabrication and High-temerature Mechanical Property of Liquid-Phase-Sintered SiC)

  • 이문희;김성원;이종호;황승국;곽재환;이진경;이상필
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.669-674
    • /
    • 2020
  • Liquid-phase-sintered (LPS) SiC materials were briefly examined with their microstructure and mechanical property. Especially, effect of high-temperature exposure on the tendency of fracture toughness of LPS-SiC were introduced. The LPS-SiC was fabricated in hot-press by sintering powder mixture of sub-micron SiC and sintering additives of Al2O3-Y2O3. LPS-SiC represented dense morphology and SiC grain-growth with some amount of micro-pores and clustered additives as pore-filling. The strength of LPS-SiC might affected by distribution of micro-pores. LPS-SiC tended to decrease fracture toughness depending on increasing exposure temperature and time.

액상소결 $\alpha$형 탄화규소의 미세구조 변화 (Microstructural evolution in liquid-phase sintered $\alpha$-silicon carbide)

  • 이종국;강현희;박종곤;이은구
    • 한국결정성장학회지
    • /
    • 제8권2호
    • /
    • pp.324-331
    • /
    • 1998
  • 2, 5, 10 mol% YAG(yttrium aluminum garnet) 분말을 액상 소결조제로 $\alpha$상 탄화규소 분말에 첨가한 후 $1850^{\circ}C$에서 소결시간을 달리하여 소결체를 제조한 다음, 소결시 일어나는 미세구조 변화를 첨가된 액상량과 소결시간의 변화에 대하여 고찰하였다. 각 조성중 2시간 소결한 시편에서 가장 높은 밀도를 나타냈으며, 소결시간이 길수록 액상의 기화로 인하여 중량감소량이 점차 증가하였다. 또한 첨가된 YAG 액상량이 증가할 수록 상대밀도(apparent density)와 중량감소량은 증가하였으나 입성장속도는 감소하였다. 액상량이 적은 시편에서는 소결시간이 길수록 일부 6H상의 탄화규소 입자가 4H상 탄화규소 입자로 상전이 되었으며, 이로 인하여 막대상 입자들이 일부 존재하였다.

  • PDF

탄화규소의 액상소결 (Liquid Phase Sintering of Silicon Carbide)

  • 김원중;김영욱
    • 한국세라믹학회지
    • /
    • 제32권10호
    • /
    • pp.1162-1168
    • /
    • 1995
  • Systematic studies of the effects of additives and processing variables on the sintered density and the effect of crystalline forms of starting powders on the microstructure of pressureless sintered silicon carbide are described. Oxide additives were effective for the densification of SiC up to 96% of theoretical density at temperature as low as 185$0^{\circ}C$. Use of embedding powder increased the sintered density, up to 98% of theoretical density, by decreasing the weight loss during sintering. Composite type duplex microstructure has been developed due to the $\beta$longrightarrow$\alpha$ phase transformation of SiC by sintering at 185$0^{\circ}C$ and heat treatment at 195$0^{\circ}C$ for 1h.

  • PDF

액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響) (Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System)

  • 신용덕;주진영;고태헌
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.