• 제목/요약/키워드: Liquid phase reduction process

검색결과 48건 처리시간 0.024초

난류 용탕 In-situ 합성 믹서의 설계 및 Cu-TiB2 나노 복합재료의 제조 (Design of Turbulent In-situ Mixing Mixer and Fabrication of Cu-TiB2 Nanocomposities)

  • 최백부;박정수;윤지훈;하만영;박용호;박익민
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.11-17
    • /
    • 2007
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/solid, liquid/gas, flow ana solidification speed simultaneously. In this study, mixing which is the key technology to this synthesis method was studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers investigated. Two inlets for different liquid metal meet ana merge like 'Y' shape tube having various shapes and radios of curve. The performance of mixer was evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection were presented to understand effect of mixer shape on mixing. The simulations show that the Reynolds number (Re) is the important factor to mixing and dispersion of $TiB_2$ particles. Mixer was designed according to the simulation, and $Cu-TiB_2$ nano composites were evaluated. $TiB_2$ nano particles were uniformly dispersed when Re was 1000, and cluster formation and reduction in volume fraction of $TiB_2$ were found at higher Re.

마이크로 추력장치용 과산화수소 촉매 반응기 (Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster)

  • 이대훈;조정훈;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

주위기체 밀도변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향 (Effect of the Change in Ambient Gas Density on the Mixture Formation Process in Evaporative Free Diesel Spray)

  • 염정국;정성식
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.209-213
    • /
    • 2005
  • The effects of density change of ambient gas on mixture formation process have been investigated in high temperature and pressure field. To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Ambient gas density was selected as experimental parameter. The ambient gas density was changed from $r_a=5.0kg/m^3\;to\;r_a=12.3kg/m^3$ with a high pressure injection system(ECD-U2). For visualization of the experiment phenomenon, a CVC(Constant Volume Chamber) was used in this study. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas.

  • PDF

산화전리수를 이용한 질소와 황 계열 악취 및 악취전구물질의 제거 (Removal of nitrogen and sulfur odorous compounds and their precursors using an electrolytic oxidation process)

  • 신승규;안해영;김한승;송지현
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.223-230
    • /
    • 2011
  • An electrolytic oxidation process was applied to remove odorous compounds from non-point odor sources including wastewater pipelines and manholes. In this study, a distance between the anode and the cathode of the electrolytic process was varied as a system operating parameters, and its effects on odor removal efficiencies and reaction characteristics were investigated. Odor precursors such as sediment organic matters and reduced sulfur/nitrogen compounds were effectively oxidized in the electrolytic process, and a change in oxidation-reduction potential (ORP) indicated that an stringent anaerobic condition shifted to a mild anoxic condition rapidly. At an electrode distance of 1 cm and an applied voltage of 30 V, a system current was maintained at 1 A, and the current density was 23.1 $mA/cm^{2}$. Under the condition, the removal efficiency of hydrogen sulfide in gas phase was found to be 100%, and 93% of ammonium ion was removed from the liquid phase during the 120 minute operating period. Moreover, the sulfate ion (${SO_4}^{2-}$) concentration increased about three times from its initial value due to the active oxidation. As the specific power consumption (i.e., the energy input normalized by the effective volume) increased, the oxidation progressed rapidly, however, the oxidation rate was varied depending on target compounds. Consequently, a threshold power consumption for each odorous compound needs to be experimentally determined for an effective application of the electrolytic oxidation.

혼합 소화공정에서 내부반송과 다양한 전처리를 통한 하수 슬러지 처리 (Sewage Sludge Treatment with Internal Recirculation and Diverse Pre-treatment Methods Using Combined Digestion Process)

  • 하정협;최석순;박종문
    • 공업화학
    • /
    • 제29권5호
    • /
    • pp.613-619
    • /
    • 2018
  • 본 연구에서는 유입 슬러지에 다양한 전처리 방법과 고액분리장치를 이용한 유출수의 잉여슬러지를 농축 후 내부반송을 적용하여, 중온혐기-고온호기 혼합 슬러지 처리 공정의 슬러지 소화효율과 메탄가스 생성량에 미치는 영향을 비교 검증하였다. 실험실 규모의 혼합 소화공정장치를 제작하여 서로 다른 유입 슬러지 전처리방법을 적용하여 5단계로 실험을 진행하였다. 1단계에서는 열-알칼리처리 전처리를 하여 슬러지를 공급하였고, 2, 3, 4단계에서는 유출수로부터 농축된 잉여슬러지의 내부반송과 각각 열-알칼리처리, 열처리, 알칼리 처리(7일)를 거친 유입 슬러지를 공급하였다. 마지막 5단계에서는 전처리를 하지 않은 슬러지를 공급하였다. 실험 결과, 1단계에서 4단계까지 진행되는 동안 Volatile Suspended Solid (VSS) 제거율은 유입 슬러지 전처리와 내부반송을 적용하는 경우 크게 증가하였으며, 메탄생성량 또한 2단계에서 슬러지 내부반송과 열-알칼리처리 전처리 적용의 경우 285 mL/L/day까지 크게 증가하였다. 한편, 5단계에서 전처리를 하지 않은 슬러지를 공급하였을 경우 VSS 제거율과 메탄 생성량이 크게 감소하였다. 결론적으로, 유입 슬러지의 열-알칼리처리 전처리와 유출수의 농축 잉여슬러지의 내부반송을 통해 복합 슬러지 처리 공정의 슬러지 제거 효율과 메탄생성량을 크게 증가시킬 수 있었다.

급속응고한 Al-Be합금의 미세조직 및 인장특성 (Microstructure and Tensile Property of Rapidly Solidified Al-Be alloy)

  • 이인우;박현호;김명호
    • 한국주조공학회지
    • /
    • 제15권5호
    • /
    • pp.459-468
    • /
    • 1995
  • For high performance aerospace structures, the properties of highest priority are low density, high strength, and high stiffness(modulus of elasticity). Addition of beryllium decrease the density of the aluminum alloy and increase the strength and the stiffness of the alloy. However it is very difficult to produce the Al-Be alloy having useful engineering properties by conventional ingot casting, because of the extremely limited solid solubility of beryllium in aluminum. So, rapid solidification processing is necessary to obtain extended solid solubility. In this study, rapidly solidified Al-6 at% Be alloy were prepared by twin roll melt spinning process and single roll melt spinning process. Twin roll melt spun ribbons were extruded at $450^{\circ}C$ with reduction in area of 25 : 1 after vacuum hot pressing at $550^{\circ}C and 375^{\circ}C$. The microstructure of melt spun ribbon exhibited a refined cellular microstructure with dispersed Be particles. As advance velocity of liquid/solid interface increase, the morphology of Be particle vary from rod-like type to spherical type and the crystal structure of Be particle from HCP to BCC. These microstructural characteristics of rapidly solidified Al-6at.%Be alloy were described on the basis of metastable phase diagram proposed by Perepezko and Boettinger. The extruded ribbon consisted of recrystallized grains dispersed with Be particles and exhibited improved tensile property compared with that of extruded ingot.

  • PDF

Flat Plate Type 소형 냉각소자 개발 (Development of Flat Plate Type Small Cooling Device)

  • 문석환;황건;유인규;조경익;유병곤
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.170-174
    • /
    • 2008
  • Recently, a problem related to the thermal management in portable electronic and telecommunication devices is becoming issued. That is due to the trend of slimness of the devices, so it is not easy to find the optimal thermal management technology for the devices. From now on, a pressed circular type cooling device has been mainly used, however the cooling device with thin thickness is becoming needed by the inner space constraint. In the present study, the silicon and metal flat plate type cooling device with the separated vapor and liquid flow path was designed and fabricated. Through the experimental study, the normal isothermal characteristic by vapor-liquid phase change was confirmed and the cooling device with 70mm of total length showed 6.8W of the heat transfer rate within the range of $4{\sim}5^{\circ}C$/W of thermal resistance. In the meantime, the metal cooling device was developed for commercialization. The device was designed to have all structures of evaporator, vapor flow path, liquid flow path and condenser in one plate. And an envelope of that could be completed by combining the two plates of same structure and size. And the simplicity of fabrication process and reduction of manufacturing cost could be accomplished by using the stamping technology for fabricating large flow paths relatively. In the future, it will be possible to develop the commercialized cooling device by revising the fabrication process and enhancing the thermal performance of that.

  • PDF

Full validation of high-throughput bioanalytical method for the new drug in plasma by LC-MS/MS and its applicability to toxicokinetic analysis

  • Han, Sang-Beom
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2006년도 추계학술대회
    • /
    • pp.65-74
    • /
    • 2006
  • Modem drug discovery requires rapid pharmacokinetic evaluation of chemically diverse compounds for early candidate selection. This demands the development of analytical methods that offer high-throughput of samples. Naturally, liquid chromatography / tandem mass spectrometry (LC-MS/MS) is choice of the analytical method because of its superior sensitivity and selectivity. As a result of the short analysis time(typically 3-5min) by LC-MS/MS, sample preparation has become the rate- determining step in the whole analytical cycle. Consequently tremendous efforts are being made to speed up and automate this step. In a typical automated 96-well SPE(solid-phase extraction) procedure, plasma samples are transferred to the 96-well SPE plate, internal standard and aqueous buffer solutions are added and then vacuum is applied using the robotic liquid handling system. It takes only 20-90 min to process 96 samples by automated SPE and the analyst is physically occupied for only approximately 10 min. Recently, the ultra-high flow rate liquid chromatography (turbulent-flow chromatography)has sparked a huge interest for rapid and direct quantitation of drugs in plasma. There is no sample preparation except for sample aliquotting, internal standard addition and centrifugation. This type of analysis is achieved by using a small diameter column with a large particle size(30-5O ${\mu}$m) and a high flow rate, typically between 3-5 ml/min. Silica-based monolithic HPLC columns contain a novel chromatographic support in which the traditional particulate packing has been replaced with a single, continuous network (monolith) of pcrous silica. The main advantage of such a network is decreased backpressure due to macropores (2 ${\mu}$m) throughout the network. This allows high flow rates, and hence fast analyses that are unattainable with traditional particulate columns. The reduction of particle diameter in HPLC results in increased column efficiency. use of small particles (<2 urn), however, requires p.essu.es beyond the traditional 6,000 psi of conventional pumping devices. Instrumental development in recent years has resulted in pumping devices capable of handling the requirements of columns packed with small particles. The staggered parallel HPLC system consists of four fully independent binary HPLC pumps, a modified auto sampler, and a series of switching and selector valves all controlled by a single computer program. The system improves sample throughput without sacrificing chromatographic separation or data quality. Sample throughput can be increased nearly four-fold without requiring significant changes in current analytical procedures. The process of Bioanalytical Method Validation is required by the FDA to assess and verify the performance of a chronlatographic method prior to its application in sample analysis. The validation should address the selectivity, linearity, accuracy, precision and stability of the method. This presentation will provide all overview of the work required to accomplish a full validation and show how a chromatographic method is suitable for toxirokinetic sample analysis. A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method developed to quantitate drug levels in dog plasma will be used as an example of tile process.

  • PDF

$SF_6$ 하이드레이트 결정의 성장 특성에 대한 연구 (Crystal growth studies of $SF_6$ clathrate hydrate)

  • 이윤석;이주동;이보람;이현주;이은경;김수민;김영석;윤석영;김양도
    • 한국결정성장학회지
    • /
    • 제19권5호
    • /
    • pp.228-236
    • /
    • 2009
  • 본 연구에서는 $SF_6$ 가스 포접 하이드레이트 결정이 생성되고 성장하는 메커니즘의 특성을 기술하였다. 실험은 일정한 압력과 온도에서 2상 실험($SF_6$ 기상/수용액상)과 3상 실험($SF_6$ 기상/수용액상/$SF_6$ 액상)의 서로 다른 두 가지 상 조건에서 이루어졌다. 두 조건 모두 기체 영역과 수용액 영역 사이의 경계면에서 하이드레이트 결정의 수지상이 섬유상 형태로 상향 성장하는 거동을 보였다. 3상 실험의 경우 하이드레이트 생성이 진행됨에 따라, 반응기 내부압의 감소로$SF_6$ 액상에서 생성된 기포가 기체와 수용액 계면의 막에 도달하여 기포의 표면이 하이드레이트로 전환되었다. 본 논문에서는 결정의 핵생성과 이동, 성장, 간섭을 중심으로 $SF_6$ 가스하이드레이트 결정의 성장 특성을 기술하였다.

밀리미터 스케일의 이상 분해 반응기에 대한 실험적 연구 (Experimental Study on Millimeter Scale Two Phase Catalytic Reactor)

  • 조정훈;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.265-270
    • /
    • 2004
  • Experiment study on a down scaled two-phase catalytic reactor is presented. As a preliminary step for the development of catalytic reactor, nano-particulate catalyst was prepared. Perovskite La$\_$0.8/Sr$\_$0.2/CoO$_3$is chosen and synthesized as a catalyst considering superior catalytic performance in reduction and oxidation process where oxygen is involved among the reagent. Reactor that has a scale of 2${\times}$10${\times}$25mm was made by machining of A1 block as a layered structure considering further extension to micro-machining. Hydrogen peroxide of 70wt% was adopted as reactant and was provided to the reactor loaded with 1.5 g of catalyst. Reactant flow rate was varied by precision pump with a range of 0.15cc/min to 17.2cc/min. Temperature distribution within reactor was recorded by 3 thermocouples and total amount of liquid product was measured. Temperature distribution and factors that affect temperature were observed and relation between temperature distribution and production rate was also analyzed. Relative time scale plays a significant role in the performance of the reactor. To obtain steady state operation, appropriate ratio of flow rate, catalyst mass and reactor geometry is required and furthermore to get more efficient production rate temperature distribution should be evenly distributed. The database obtained by the experiment will be used as a design parameter for micro reactor.