• 제목/요약/키워드: Liquid phase reaction

검색결과 439건 처리시간 0.031초

Leaf Photosynthesis as Influenced by Mesophyll Cell Volume and Surface Area in Chamber-Grown Soybean (Glycine max) Leaves (중엽세포의 체적 및 표면적과 콩잎의 광합성 능력간 관계)

  • Jin Il, Yun;S. Elwynn, Taylor
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제33권4호
    • /
    • pp.353-359
    • /
    • 1988
  • Variations in photosynthetic capacities of leaves differing in thickness were explained on the basis of relationships between gas exchange and internal leaf structure. The relative importance of gas diffusion and of biochemical processes as limiting for leaf photosynthesis was also determined. Mesophyll cell surface was considered to be the limiting internal site for gas diffusion. and cell volume to be indicative of the sink capacity for CO$_2$ fixation. Increases in cell surface area were assumed to reduce proportionately mesophyll resistance to the liquid phase diffusion of CO$_2$. Increased cell volume was thought to account for a proportional increase in reaction rates for carboxylation, oxygenation. and dark respiration. This assumption was tested using chamber-grown Glycine max (L.) Merr. cv. Amsoy plants. Plants were grown under 200, 400, and 600 ${\mu}$mol photons m$\^$-2/ s$\^$-1/ of PAR to induce development of various leaf thickness. Photosynthetic CO$_2$ uptake rates were measured on the 3rd and 4th trifoliolate leaves under 1000 ${\mu}$mol photons m$\^$-2/ s$\^$-1/ of PAR and at the air temperature of 28 C. A pseudo -mechanistic photosynthesis model was modified to accommodate the concept of cell surface area as well as both cell volume and surface area. Both versions were used to simulate leaf photosynthesis. Computations based on volume and surface area showed slightly better agreement with experimental data than did those based on the surface area only. This implies that any single factor, whether it is photosynthetic model utilized in this study was suitable for relating leaf thickness to leaf productivity.

  • PDF

Bioanalytical method validation for determination of arsenic speciation in dog plasma using HPLC-ICP/MS (Dog 혈장 중 HPLC-ICP/MS를 이용한 비소 화학종 분석법 검증)

  • Kim, Jong-Hwan;Kwon, Young Sang;Shin, Min-Chul;Kim, Su Jong;Seo, Jong-Su
    • Analytical Science and Technology
    • /
    • 제29권5호
    • /
    • pp.234-241
    • /
    • 2016
  • The approach presented in this article refers to the bioanalytical method validation for the detection and quantitative determination of arsenic species including arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in dog plasma by high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP/MS). The arsenic species were separated using an agilent As speciation column by a mobile phase of 2 mM sodium phosphate monobasic, 0.2 mM ethylenediaminetetraacetic acid disodium salt dehydrate, 10 mM sodium acetate, 3 mM sodium nitrate and 1 % ethyl alcohol at pH 11 (adjusted with 1M NaOH). The method validation experiment was obtained selectivity, linearity, accuracy, precision, matrix effect, recovery, system suitability, dilution integrity and various stabilities. All calibration curves showed good linearity (R2>0.999) within test ranges. The lower limit of quantitation (LLOQ) was 5 ng/mL for As(III), As(V) and DMA, and 20 ng/mL for MMA. The system suitability and dilution values were within 6.5 % and 7.7 %. Subsequently, the developed and validated HPLC-ICP/MS method was also successfully applied to determine the arsenic speciation in dog plasma samples, and the recoveries for the spiked samples were in the range of 91.5–102.2 %. Therefore, this method could be applied to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies in biological samples.

Evaluation of the Properties of an Environment-Friendly De-icing Agent Based on Industrial By-Products (산업부산물을 활용한 친환경제설제의 특성평가)

  • Heo, Hyung-Seok;Lee, Byung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제21권6호
    • /
    • pp.132-139
    • /
    • 2017
  • A huge amount of de-icing agent is sprayed during winter to promote traffic safety in cold regions, and the quantity of de-icing agent sprayed has increased each year. The main ingredients in commonly used de-icing agents are chlorides, such as calcium chloride($CaCl_2$) and sodium chloride(NaCl). While calcium chloride is mostly used in Korea and sodium chloride is usually used in the U.S. and Japan, all de-icing agents include chloride ions. The chlorides included in sprayed calcium chloride-based de-icing agents have severe adverse effects, including the corrosion of reinforcing steels through salt damage by infiltrating into road structures, reduced structural performance of pavement or damage to bridge structures, and surface scaling, in combination with freezing damage in winter, as well as water pollution. In addition, the deterioration of paved concrete road surface that occurs after the use of calcium chloride-based de-icing agent accelerates the development of visual problems with traffic structures. Therefore, the present study was performed to prepare an environment-friendly liquid de-icing agent through a reaction between waste organic acids and calcium-based by-products, which are industrial by-products, and to analyze the properties of the de-icing agent in order to evaluate its applicability to road facilities.

Real-Time Monitoring of Mitochondrial ATP Synthesis and Hydrolysis by Surface Infrared Spectroscopy

  • Yamaguchi, Ryo-Taro;Hirano-Iwata, Ayumi;Aonuma, Yuki;Yoshimura, Yuya;Shinohara, Yasuo;Kimura, Yasuo;Niwano, Michio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.108-109
    • /
    • 2013
  • Mitochondria play key roles in the production of cell's energy. Their dominant function is the synthesis of adenosine 5'-triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (Pi) through the oxidative phosphorylation. Evaluation of drug-induced mitochondrial toxicity has become increasingly important since mitochondrial dysfunction has recently been implicated in numerous diseases including cancer and diabetes mellitus. Mitochondrial functions have been monitored via oxygen consumption, mitochondrial membrane potential, and more importantly via ATP synthesis since ATP synthesis is the most essential function of mitochondria. Various analytical methods have been employed to investigate ATP synthesis in mitochondria, including high performance liquid chromatography (HPLC), bioluminescence technique, and pH measurement. However, most of these methods are based on destructive analysis or indirect monitoring through the enzymatic reaction. Infrared absorption spectroscopy (IRAS) is one of the useful techniques for real-time, label-free, and direct monitoring of biological reactions [1,2]. However, the strong water absorption requires very short path length in the order of several micrometers. Transmission measurements with thin path length are not suitable for mitochondrial assays because solution handlings necessary for evaluating mitochondrial toxicity, such as rapid mixing of drugs and oxygen supply, are difficult in such a narrow space. On the other hand, IRAS in the multiple internal reflection (MIR) geometry provides an ideal optical configuration to combine solution handling and aqueous-phase measurement. We have recently reportedon a real-time monitoring of drug-induced necrotic and apoptotic cell death using MIR-IRAS [3,4]. Clear discrimination between viable and damaged cells has been demonstrated, showing a promise as a label-free and real-time detection for cell-based assays. In the present study, we have applied our MIR-IRAS system to mitochondria-based assays by monitoring ATP synthesis in isolated mitochondria from rat livers. Mitochondrial ATP synthesis and hydrolysis were in situ monitored with MIR-IRAS, while dissolved oxygen level and solution pH were simultaneously monitored with O2 and pH electrodes, respectively. It is demonstrated that ATP synthesis and hydrolysis can be monitored by the IR spectral changes in phosphate groups in adenine nucleotides and MIR-IRAS is useful for evaluating time-dependent drug effects of mitochondrial toxicants.

  • PDF

Polyacetylene Compounds from Panax ginseng C.A. Meyer (인삼의 Polyacetylene 화합물)

  • Shim Sang Chul;Chang Suk-Ku
    • Proceedings of the Ginseng society Conference
    • /
    • 고려인삼학회 1988년도 학술대회지
    • /
    • pp.122-128
    • /
    • 1988
  • Several major polyacetylene compounds were isolated from the petroleum-ether fraction of fresh Korean ginseng roots through solvent fractionation. partition and silica gel column chromatography. Further separation of acetylenic compounds was accomplished by bonded normal phase HPLC utilizing a moderately nonpolar microparticulate column. The preparative separation for the various spectral measurements was carried out by low pressure preparative liquid chromatography. The chemical structure of these polyacetylenes separated was determined by UV. IR/FTIR. $^{1}H$ NMR. mass spectral and elemental analysis. These are identified to be heptadeca-1-en-4.6-diyn-3.9.l0.-triol [1] heptadeca-1.9-dien-4.6-diyn-3-ol. heptadeca-1.8-dien-4.6-diyn-3.10-diol and the 4th was denatured polyacetylene. heptadeca-1.4-dien-6.8-diyn-3.10-diol. Two different p-substituted benzoates of panaxynol were synthesized for the determination of exciton chirality. The circular dichroism spectra in the UV region show that panaxynol p-bromobenzoate and p-dimethyl-aminobenzoate constitute negative exciton chirality [2]. Isolated major polyacetylene compounds were irradiated in aerated solution with 300 nm UV light to obtain the oxidized product at the allylic alcohol center to corresponding carbonyl compounds such as heptadeca-1-en-4.6-diyn-9.10-diol-3-one and heptadeca-1.9-dien-4.6-diyn-3-one. These photooxidation compounds have en-on-diyne chromophore and undergo nucleophilic addition reaction with methanol to yield ${\beta}-methoxy$ carbonyl compounds such as heptadeca-9-en-4.6-diyn-1-methoxy-3-one and heptadeca-4.6-diyn-1-methoxy-9.10-diol-3-one.

  • PDF

Flux of Volatile Organic Compounds from Wastewater Treatment Plant (하수처리장에서 휘발성유기화합물의 FLUX)

  • Kim, Jong O;Chang, Daniel P.Y.;Lee, Woo Bum
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제22권1호
    • /
    • pp.91-101
    • /
    • 2000
  • The emission sources of volatile organic compounds (VOCs) are wastewater treatment plants. sanitary landfills, automobile industries, and so on. The VOCs are harmful to human beings because of their toxicity and carcinogenicity, and cause the serious air pollution problem producing ozone ($O_3$) as a result of photochemical reaction. To investigate the emission of VOCs from wastewater treatment plant, aeration basins at the City of Los Angeles' Hyperion Treatment Plant were selected and measured flux was compared with calculated flux. For compounds commonly associated with wastewater (DCM, TCM, PCE, UM, DCB, UND) and not expected in vehicle exhaust or ambient air coming off the ocean, concentrations immediately downwind of the aeration basins were a factor of ten or higher than those measured in the upwind air. The airborne flux of less degradable or non-biodegradable compounds, e.g., DCE, DCM, TCA, DCA, TCM, PCE, DCB, through an imaginary plane at the downwind side of the aeration basins was in agreement with the estimated flux from measured liquid phase concentrations. Henry's constant. aeration rate, and an assumption of bubble saturation. For several compounds (PCE, DCE, TCA), the ratio (measured flux/calculated flux) is almost unity.

  • PDF

A Study on the Comparison of Brazed Joint of Zircaloy-4 with PVD-Be and Zr-Be Amorphous alloys as Filler Metals (PVD-Be와 비정질 Zr-Be 합금을 용가재로 사용한 Zircaloy-4의 브레이징 접합부의 비교 연구)

  • Hwang, Yong-Hwa;Kim, Jae-Yong;Lee, Hyung-Kwon;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 2006
  • Brazing is an important manufacturing process in the fabrication of Heavy Water Reactor fuel rods, in which bearing and spacer pads are joined to Zircaloy-4 cladding tubes. The physical vapor deposition(PVD) technique is currently used to deposit metallic Be on the surfaces of pads as a filler metal. Amorphous Zr-Be binary alloys which are manufactured by rapid solidification process are under developing to substitute the conventional PVD-Be coating. In the present study, brazed joint with PVD and amorphous alloys of $Zr_{1-x}Be_{x}(0.3{\le}x{\le}0.5)$ as filler metals are compared by mechanism, microstructure and hardness. The thickness of brazed joint with amorphous alloys became much smaller than that of PVD-Be. The erosion of base metal did not occur in the brazed joint with amorphous alloys. The brazing mechanism for PVD-Be seems to be Be diffusion into Zr-4 with capillary action resulting from eutectic reaction while that for amorphous alloys are associated with the liquid phase formation in the brazed joint. The brazed joint microstructure with PVD-Be consists of dendrite while that with amorphous alloys is globular. The $Zr_{0.7}Be_{0.3}$ alloy shows the smooth interface with little erosion in the base metal and is recommended a most suitable brazing filler metal for Zircaloy-4.

  • PDF

Determination of Free 4-hydroxyproline with Dansylchloride by HPLC in Human Urine (소변 중 4-hydroxyproline 분석에 관한 연구)

  • Lee, Keou-Weon;Cho, Young-Bong;Lee, Kyung-Jong
    • Journal of Preventive Medicine and Public Health
    • /
    • 제35권4호
    • /
    • pp.282-286
    • /
    • 2002
  • Objectives : The level of 4-hydroxyproline (4-Hyp) in human urine was measured using high performance liquid chromatography (HPLC) with a fluorescence detector. This method is useful for medical examinations and investigating the radicals induced by physical, chemical, mental stresses. This method is superior to many published several methods in terms of its low cost and ability to analyze many samples. Methods : The urine from workers in a tire manufacturing company (22 male pre- and post-shift workers) and 18 office-workers as controls were analyzed. Data concerning age, the cumulative drinking amount and the cumulative smoking amount was collected with a questionnaire. The optimum applied amount of dansyl-Cl, the optimum reaction temperature and time, the recoveries and the optimum pH of the eluent and buffer were determined.4-Hyp from human urine was derivatized with dansyl-Cl (dimethylamino-naphthalene-1-sulfonyl chloride) after removing the a-amino acid by a treatment with phthalic dicarboxaldehyde (OPA) and cleaned with Bond Elut C18 column. The 4-Hyp derivatives were separated on a reversed phase column by gradient elution with a phosphate buffer (5 mmol, pH 8.0) and acetonitrile, and detected by fluorescence measurements at 340 nm (excitation) and 538 nm (emission). Results : The detection limit for the urinary free 4-Hyp was $0.364{\mu}mol/l$. The recovery rate of 4-Hyp was 99.7%, and the effective pH of the phosphate buffer and borate buffer were 3.0 and 8.0, respectively. From statistical analysis, age, drinking and smoking did not affect the urinary free 4-Hyp in both the controls and workers. The range of urinary 4-Hyp in the controls, pre-shift, and post-shift workers were 0.33-16.44, N.D-49.06, and $0.32-56.27{\mu}mol/l$. From the pared-sample t-test, the urinary 4-Hyp levels in post-shift workers ($11.82{\pm}6.73\;nmmol/mg\;Cre$) were 2-fold higher than in pre-shift workers ($5.36{\pm}5.53\;nmol;/mg\;Cre$) and controls ($4.91{\pm}4.89\;nmol;/mg\;Cre$). Conclusions : This method was developed with high sensitivity, accuracy, and precision. The present method was effectively applied to analyze the urinary free 4-Hyp in both controls and workers.

On the Properties of TLCP/PBT Blends Prepared by In Situ Polymerization in PBT Solution (In situ 중합에 의해서 제조된 TLCP/PBT 블렌드의 특성 연구)

  • Choi, Jae-Kon;Park, Il-Soo;Kim, Sun;Choi, Yoo-Sung;Lee, Eung-Jae;Jo, Byung-Wook
    • Elastomers and Composites
    • /
    • 제39권3호
    • /
    • pp.217-227
    • /
    • 2004
  • A new thermotropic liquid crystalline polymer(TLCP) containing a triad aromatic ester type mesogenic unit and butylene terephthalate unit(BT) in the main chain was synthesized by polycondensation reaction. The TLCP synthesized showed nematic mesophasic behavior and its transition temperature from solid to mesophase was $260^{\circ}C$. The TLCP/PBT blends were prepared by in-situ polymerization in PBT solution and characterized by differential scanning calorimeter(DSC), thermogavimetric analyzer(TGA), scanning electron microscope(SEM), x-ray diffractometer(XRD), and dynamic mechanical thermal analyze, (DMTA). The blends showed well dispersed TLCP phases with domain sizes $0.05{\sim}0.2{\mu}m$ in the PBT matrix. As the increasing TLCP content from 5 to 20 wt%, ${\Delta}Hm$ values of pure PBT in the blend were increased because TLCP acts as a nucleating agent in the PBT matrix. The mechanical properties of the blends depended on the TLCP contents because the TLCP acted effectively as a reinforcing material in the PBT matrix. The blends showed good interfacial adhesion between the TLCP phase and PBT matrix.The blends prepared by in-situ polymerization showed higher mechanical properties and well dispersed TLCP domains than those of the blends prepared by melt blending.

Feasibility Evaluation for Remediation of Groundwater Contaminated with Heavy Metal using Calcium Polysulfide in Homogeneous media (균질한 매질 내 Calcium polysulfide 주입에 따른 고농도 중금속 오염 지하수 정화 타당성 검토)

  • Hyeon Woo Go;Jin Chul Joo;Kyoungphile Nam;Hee Sun Moon;Sung Hee Yoon;Dong Hwi Lee;So Ye Jang
    • Journal of Soil and Groundwater Environment
    • /
    • 제28권1호
    • /
    • pp.1-14
    • /
    • 2023
  • In this study, column tests using relatively uniform Jumunjin sand media were conducted to evaluate the feasibility of calcium polysulfide (CaSx, CPS) in removing high concentration of Zn2+ in groundwater. The injected CPS solution reacted rapidly with Zn2+ in artificial groundwater and effectively reduced Zn2+ by more than 99% through metal sulfide precipitation. Since the density (d = 1.27 g/cm3 ) of CPS solution was greater than that of water, CPS solution settled down rapidly while capturing Zn2+ and formed stable CPS layer similar to dense nonaqueous phase liquid. Mass balance analysis on Zn2+ in CPS solution suggested that CPS solution effectively reacted with Zn2+ to form metal sulfide precipitates except for high groundwater seepage velocity of 400 cm/d. With greater groundwater seepage velocity, injected CPS did not completely dissolve at the CPS-water interface, but a partially-misible CPS layer continuously moved and reacted with Zn2++ in the direction of groundwater flow. Since hydraulic conductivity (Kh) decreased slightly due to the generated metal precipitates in the inter-pores of media, injection of CPS solution should be optimized to prevent clogging. As evidenced by both XRF and SEM/EDS results, ZnS precipitates were clearly observed through the reaction between the CPS solution and Zn2+. Further study is warranted to evaluate the feasibility of CPS to remove high-concentration heavy metalcontaminated groundwater in complex and heterogeneous media.