• Title/Summary/Keyword: Liquid light guide

Search Result 50, Processing Time 0.029 seconds

Flexible liquid light-guide-based radiation sensor with LaBr3:Ce scintillator for remote gamma-ray spectroscopy

  • Jae Hyung Park;Siwon Song;Seunghyeon Kim;Taeseob Lim;Jinhong Kim;Bongsoo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1045-1051
    • /
    • 2023
  • In this study, we fabricated a liquid light-guide-based radiation sensor with a LaBr3:Ce scintillator for remote gamma-ray spectroscopy. We acquired the energy spectra of Cs-137 and Co-60 using the proposed sensor, estimated the energy resolutions of the full energy peaks, and compared the scintillation light output variations. The major peaks of the radionuclides were observed in each result, and the estimated energy resolutions were similar to that of a general NaI(Tl) scintillation detector without a liquid light guide. Moreover, we showed the relationships of energy resolution and analog-to-digital channel regarding the number of photoelectrons produced and confirmed the effects of light guide length on remote gamma-ray spectroscopy. The proposed sensor is expected to be utilized to perform remote gamma-ray spectroscopy for distances of 3 m or more and would find application in many fields of nuclear facilities and industry.

Direct surface forming: New polymer processing technology for large light guide of TFT-LCD module

  • Cho, Kwang-Hwan;Kyunghwan Yoon;Park, Sung-Jin;Park, Chul
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.4
    • /
    • pp.167-171
    • /
    • 2003
  • The backlight unit (BLU) is used as a light source of TFT liquid-crystalline-display (TFT-LCD) module. In this backlight unit, one of important components is the light guide, which is usually made of transparent polymers. Currently, the screen-printing method is mainly used for the light guide as a manufacturing process. However, it has limitation to the flexibility of three-dimensional optical design. In the present paper a new alternative manufacturing method for the light guide with low-cost is proposed. This manufacturing method is named as direct surface forming (DSF), which is very similar to the well-known hot embossing except for partial contact between mold and substrate. The results of this new manufacturing method are presented in terms of processing condition, dimensional accuracy, productivity, etc.

Development of Direct Surface Forming Process

  • Cho, Kwang-Hwan;Yoon, Kyung-Hwan
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.73-77
    • /
    • 2003
  • The backlight unit(BLU) is used as a light source of TFT liquid-crystalline-display (TFT-LCD) module. In this backlight unit, one of important components is the light guide, which is usually made of transparent polymers. Currently the screen-printing method is mainly used for the light guide as a manufacturing process. However, it has limitation to the flexibility of three-dimensional optical design. In the present paper a new alternative manufacturing method for the light guide with low-cost is proposed. This manufacturing method is named as direct surface forming (DSF), which is very similar to the well-known hot embossing except for partial contact between mold and substrate. The results of this new manufacturing method are presented in terms of processing condition, dimensional accuracy, productivity, etc.

  • PDF

Manufacturing of Wedge-type Light Guide Plates for Large Liquid Crystal Displays (대형 LCD용 쐐기형 도광판 제조공정에 대한 연구)

  • Kim, Min-Soo;Kim, Jangseob;Hong, Jun-Ho;Shin, Dongwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.30-35
    • /
    • 2020
  • The light guide plate (LGP) provides a surface light source on the back of the liquid crystal display (LCD), which is not self-emitting; thus, it is an essential component of display units requiring sufficient brightness. To maximize the light-emitting effect of an LGP, enough incident light, from the light source, should enter into its side. However, the current trend in LCD panels is represented by larger and thinner screens and this smaller thickness prevents the accordingly thin LGPs from providing sufficient brightness. This paper proposes a process for manufacturing wedge-type LGPs, which might increase the amount of incident light and, consequently the surface light emission, for applications in large LCDs. The proposed method was validated by building a dedicated manufacturing machine and performing illuminance experiments on the fabricated LGP.

Optical Design of Light Guide Plate Material for Slim Liquid Crystal Display (박형 디스플레이를 위한 도광판의 광학설계)

  • Gong, Taewon;Choi, Gyu Jin;Kwon, Jin Hyuk;Park, In Shik;Lee, Sunmook;Woo, DongJin;Gwag, Jin Seog
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.233-238
    • /
    • 2014
  • In this paper, in order to achieve slim and light liquid crystal display, we examine the optical conditions that can obtain uniform light with higher optical efficiency over whole light guide plate (LGP) through simulation. Furthermore, to overcome the issues of hot spot in front of red, green, and blue light emitting diodes (RGB LEDs) source and non-uniform color mixing, we propose four shaped color mixing bars tied up with the LGP and check the optical characteristics of the LGP with them by simulation. Consequently, we could know the optical conditions of improving optical efficiency and optical uniformity in the LGP through the optical design. Also we confirmed that the issues of the hot spot and non-uniform color mixing in edge type LED could be solved by using the ${\bigwedge}$-shaped window color mixing bar.

Large-size LCD with touch-sensing capability

  • Zhu, X.L.;Sit, Cass K.M.;Ma, Mark W.;Feng, Y.J.;Ng, K.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1519-1522
    • /
    • 2009
  • We describe a 32" liquid-crystal display (LCD) with multi-touch sensing capability by integrating IR detector arrays onto the LED backlight plate. A transparent light guide is placed in front of the display screen, with IR LEDs disposed at its edges and emitting IR light into the light guide, the light is trapped by total internal reflection within the light guide to be as touch-sensing light. A physical contact with the acrylic plate surface will stimulate some trapped light to be escaped from the light guide and pass through LCD panel to be detected by the IR detectors. The touch-sensing LCD with this configuration can locate simultaneous multiple touche points on the touchable surface.

  • PDF

An Experimental Study of the Effect of Process Conditions on Direct Surface Forming of a Light-Guide (성형조건에 따른 부분 압축가열방식의 도광판 성형에 관한 실험적 연구)

  • 조광환;윤경환
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.79-84
    • /
    • 2004
  • A light-guide is one of several important components of backlight unit in TFT-LCD. The manufacturing technology and optical system design of the light guide is very sensitive to quality and cost of the TFT-LCD module. In the present study a new manufacturing method which is called as direct surface forming(DSF) has been tested under various conditions. DSF is very similar to the well-known hot embossing except for partial contact between mold and substrate. The final V-groove pattern shows different shapes depend on the temperature of mold surface, contact time of mold and depth of V-groove.

Micro-patterning of light guide panel in a LCD-BLU by using on silicon crystals (실리콘 결정면을 이용한 LCD-BLU용 도광판의 미세산란구조 형성)

  • lChoi Kau;Lee, Joon-Seob;Song, Seok-Ho;Oh Cha-Hwan;Kim, Pill-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • Luminous efficiency and uniformity in a LCD-BLU are mainly determined by fine scattering patterns formed on the light guide panel. We propose a novel fabrication method of 3-dimensional scattered patterns based on anisotropic etching of silicon wafers. Micro-pyramid patterns with 70.5 degree apex-angle and micro-prism patterns with 109.4 degree apex-angle can be self-constructed by the wet, anisotropic etching of (100) and (110) silicon wafers, respectively, and those patterns are easily duplicated by the PDMS replica process. Experimental results on spatial and angular distributions of irradiation from the light guide panel with the micro-pyramid patterns were very consistent with the calculation results. Surface roughness of the silicon-based micro-patterns is free from any artificial defects since the micro-patterns are inherently formed with silicon crystal surfaces. Therefore, we expect that the silicon based micro-patterning process makes it possible to fabricate perfect 3-dimensional micro-structures with crystal surface and apex angles, which may guarantee mass-reproduction of the light guide panels in LCD-BLU.

Design and Analysis of Diffractive Grating Imprinted Light-guide Plate for LCD Illumination

  • Choi, Hwan-Young;Park, Young-Pil
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.7-15
    • /
    • 2004
  • A highly simplified backlight unit mainly composed of diffractive grating in sub-micron order imprinted light-guide plate (LGP) is proposed for edge-lit backlight unit. Optical characteristics of the imprinted LGP are examined by RCWA and the performance is verified through Monte Carlo simulation. Results show that the diffraction efficiency, luminous flux and its uniformity over the area are significantly affected by the angle of incident ray. Consequently couples of design considerations are additionally proposed to enhance luminous flux. In terms of peak luminance and out-coupling luminous flux, the experimental results are agreed well with the performance simulation. Finally, compared with optical characteristics of conventional backlight unit, we could conclude that the proposed simplified backlight unit made of diffractive grating imprinted light-guide plate is a good substitute for the conventional backlight unit.

Replication of concave and convex microlens array of light guide plate for liquid crystal display in injection molding (음각, 양각 광학패턴 적용 휴대폰용 도광판 금형 제작 및 광특성 연구)

  • Hwang, Chul Jin;Kim, Jong Sun;Kang, Jeong Jin;Hong, Seokkwan;Yoon, Kyung Hwan
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.29-32
    • /
    • 2008
  • A back light unit (BLU) is a key module of a thin film transistor liquid crystal display (TFT-LCD), frequently utilized in various mobile displays. In this study, we experimentally characterize transcription and optical properties of concave and convex microlens arrays (MLAs) of light guide plate (LGP) fabricated by injection molding with polycarbonate as a LGP substrate material. Nickel mold inserts were manufactured by electroforming on the MLA which was fabricated by the thermal reflow of photoresist microstructures patterned by UV-photolithography. For the case of convex microlens, the height of replicated microlens was less than that of the mold insert while maintaining almost the same microlens diameter of the mold insert as the location of the microlens is far from the gate. In contrast, for the concave microlens, the diameter of replicated microlens was larger than that of mold insert, while showing almost the same microlens height as the mold insert. From the optical examination of replicated convex and concave MLAs, it was found that a higher luminance of the LGP was achieved by the concave MLAs compared to the convex MLAs (about 30% enhancement in this case)due to the utilization of a larger amount of light provided by the light sources.

  • PDF