• Title/Summary/Keyword: Liquid laser material

Search Result 54, Processing Time 0.031 seconds

Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures

  • Bae, Chang-Jun;Ramachandran, Arathi;Chung, Kyeongwoon;Park, Sujin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.470-477
    • /
    • 2017
  • Ceramic processing to fabricate 3D complex ceramic structures is crucial for structural, energy, environmental, and biomedical applications. A unique process is ceramic stereolithography, which builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This approach directly writes layers in liquid ceramic suspension and allows one to fabricate ceramic parts and products having more accurate, complex geometries and smooth surfaces. In this paper, both UV curable materials and processes are presented. We focus on the basic material principles associated with free radical polymerization and rheological behavior, cure depth and broadening of cured lines, scattering at ceramic interface and their corresponding simulation. The immediate potentials for ceramic AM to change industry fabrication are also highlighted.

Electro-controllable omni-directional laser emissions from a helical polymeric network composite film

  • Jang, Won-Gun;Park, Byoung-Choo;Kim, Min-A;Kim, Sun-Woong;Kim, Yun-Ki;Choi, Eun-Ha;Seo, Yoon-Ho;Cho, Guang-Sup;Kang, Seung-Oun;Takezoe, Hideo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.883-886
    • /
    • 2008
  • In optical information technology, an electro-controllable Photonic Band Gap (PBG) in a photonic crystal (PC) material is potentially useful for the manipulation of light. Despite a great deal of research on PBGs, the reliable use of electro-active PBG material systems is restricted to only a few cases because of the complex and limiting nature of the structures involved. Here, we propose a PBG system that uses a liquid crystal (LC) polymer composite. The composite is made of nematic LCs (NLCs) embedded in polymeric helical networks of photo-polymerized cholesteric LCs (CLCs). The composite film shows a large field-induced reversible color shift over 150 nm of the reflection band, due to the reorientational undulation of the helical axis, similar to the Helfrich effect.

  • PDF

A Study on the Status of the 3D Printer in Furniture Design (가구디자인에서 3D Printer의 활용 현황에 관한 연구)

  • Kang, Hyun-dae
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.4
    • /
    • pp.383-391
    • /
    • 2015
  • In recent years the industry has utilized some of the 3D printers in the manufacturing process a trend which spread also a personal desktop 3D printer priced. The 3D printer can create the 3D object by using an ink or a laser instead of the powders, and various liquid plastic material. Properties of 3D printers are liquid, solid, powder and raw materials are also classified as varied. New ideas and processes in the form of designer furniture, becoming increasingly evolved through the development of materials and technologies. Science, art and technology combine to create a new aesthetic for the complex and free binding structure is a combination of design and materials are available in craft and the structure appears not showing. 3D scanning was not simply continue to develop as the production process by a variety of tools and content transformation. Create new mathematical tables and chairs designed by the theory fit the digital age shows a coupling structure with decoration into small pieces. It has created a new craft technique in the digital age.

Spray characteristics of effervescent atomizer with internal flows (Effervescent atomizer의 내부 유동에 따른 분무특성)

  • Ku, K.W.;Hong, J.G.;Kim, J.H.;Lee, C.W.;Park, C.D.;Lim, B.J.;Chung, K.Y.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.123-124
    • /
    • 2012
  • Effervescent atomizer in which the liquid is ejected from nozzle with bubble caused by gas injection into the liquid is one of twin-fluid atomizers. Effervescent atomizer is operated with the lower injection pressure and the smaller air flow rate when compared with those of other twin-fluid atomizers. In this study, we attempted experiment study to investigate the atomization characteristics of effervescent atomizer related with the internal flow condition. The nozzle was made with acrylic material to investigate the nozzle internal flow. The macroscopic spray analysis was conducted with internal flow images and spray images. Furthermore, SMD was measured by using the laser diffraction method. According to this study, the internal flow condition changed from bubbly flow to annular flow as the air-liquid mass ratio(ALR) increases. At that time, the atomization characteristics were improved.

  • PDF

Studies on the Wave Propagation and Fluctuation in Randomly Ditribution Media of L-Aspartic Acid (L-Aspartic Acid의 무질서하게 분포된 매질에서 파동전개와 변동에 관한 연구)

  • Kim, Ki-Jun;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.122-128
    • /
    • 2012
  • The influences of fluorescence, scattering, and flocculation in turbid material by light scattering of L-aspartic acid, preservative and emulsifier were interpreted for the scattered fluorescence intensity and wavelength. They have been studied the molecular properties by the spectroscopy of laser induced fluorescence (LIF) and flocculation. The effects of optical properties in scattering media have been found by the optical parameters(${\mu}_s$, ${\mu}_a$, ${\mu}_t$). Flocculation is an important step in many solid-liquid separation processes and is widely used. When two particles approach each other, interactions of several colloid particles can come into play which may have major effect on the flocculation and LIF process. The values of scattering coefficient ${\mu}_s$ are large by means of the increasing scattering of scatterer, The values have been found that the slope decays exponentially as a function of concentration from laser source to detector by our experimental result. It may also aid in designing the best model for oil chemistry, bio-pharmaceutical products, laser medicine and application of medical engineering on LIF and coagulation in particle transport mode.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 -)

  • Kim, Jong-Do;Kil, Byung-Lea;Kwak, Myung-Sub;Song, Moo-Keun
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.

Liquid crystal effects on poling behaviour of NLO chromophore dispersed in organically modified sol-gel materials (유/무기 졸-겔 재료에 비선형광학 물질의 배향특성에 대한 액정효과)

  • Baek, In-Chan;Seok, Sang-Il;Jin, Moon-Young;Lee, Chang-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.132-132
    • /
    • 2003
  • Second-order nonlinear optical(NLO) materials have been extensively studied for applications in photonic devices, such as frequency doubling and electro-optical(EO) modulation, because of their large optical nonlinearity, excellent processibility, low dielectric constant, and high laser damage thresholds. The poling behaviour of NLO chromophore in organic/inorganic matrixes showed the randomization of poled NLO chromophore in the absence of poling Held. The liquid crystal molecules in a droplet showed a long-range orientational order along a director. Therefore, liquid crystal effects on poling behaviour of NLO chromophore dispersed in organically modified inorganic sol-gel materials were investigated. Using sol-gel process for the development of NLO material has received increasing attention, Organically modifked inorganic NLO sol-Eel materials are obtained via incorporation of the organic NLO active chromophore into an alkoxysilane based inorganic network. One of the most important thing in this works was that tetraethoxysilane(TEOS) and methyltrimathoxysilane(HTMS) were used as precursor followed by hydrolysis and condensation without using any acidic catalyst during the process. The NLO chromophores in the liquid crystal nanodomains were well mixed with I/O hybrid matrix, deposited on transparent ITO-coated glasses. The poling behaviour of liquid crystal effects of NLO chromophore dispersed in I/O hybrid matrix were investigated by UV-vis spectroscopy. Size distribution and morphology of the NLO chromophores doped in the liquid crystal nanodomains dispersed in I/O hybrid matrix were investigated by SEM.

  • PDF

Development of an FPGA-based Sealer Coating Inspection Vision System for Automotive Glass Assembly Automation Equipment (자동차 글라스 조립 자동화설비를 위한 FPGA기반 실러 도포검사 비전시스템 개발)

  • Ju-Young Kim;Jae-Ryul Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.320-327
    • /
    • 2023
  • In this study, an FPGA-based sealer inspection system was developed to inspect the sealer applied to install vehicle glass on a car body. The sealer is a liquid or paste-like material that promotes adhesion such as sealing and waterproofing for mounting and assembling vehicle parts to a car body. The system installed in the existing vehicle design parts line does not detect the sealer in the glass rotation section and takes a long time to process. This study developed a line laser camera sensor and an FPGA vision signal processing module to solve this problem. The line laser camera sensor was developed such that the resolution and speed of the camera for data acquisition could be modified according to the irradiation angle of the laser. Furthermore, it was developed considering the mountability of the entire system to prevent interference with the sealer ejection machine. In addition, a vision signal processing module was developed using the Zynq-7020 FPGA chip to improve the processing speed of the algorithm that converted the profile to the sealer shape image acquired from a 2D camera and calculated the width and height of the sealer using the converted profile. The performance of the developed sealer application inspection system was verified by establishing an experimental environment identical to that of an actual automobile production line. The experimental results confirmed the performance of the sealer application inspection at a level that satisfied the requirements of automotive field standards.

Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

  • Na, Min Young;Park, Sung Hyun;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1256-1261
    • /
    • 2018
  • Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (${\Delta}T_x$) and the difference in specific heat between the frozen glass state and the supercooled liquid state (${\Delta}C_p$). The measured ${\Delta}T_x$ and ${\Delta}C_p$ values show a strong composition dependence. However, the composition showing the highest ${\Delta}T_x$ and ${\Delta}C_p$ does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ${\Delta}T_x$ and ${\Delta}C_p$ may be related to enhancement of icosahedral SRO near $T_g$ during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are $Al_{87}Ni_3Y_{10}$, $Al_{85}Ni_5Y_{10}$, and $Al_{86}Ni_5Y_9$.

A Study on Spectra of Laser Induced Flourescence in Phantom of N-propyl-N,N-dimethylethanolamine (N-propyl-N,N-dimethylethanolamine의 Phantom에서 Laser Induced Fluorescence의 스펙트라에 관한 연구)

  • Kim, Ki-Jun;Lee, Joo-Ho;Lee, Joo-Youb;Sung, Wan-Mo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.330-338
    • /
    • 2015
  • The influences of fluorescence, scattering, and flocculation in turbid material by light scattering of N-propyl-N,N-dimethylethanolamine, fluorescence agent and absorption agent were interpreted for the scattered fluorescence intensity and wavelength. They have been studied the molecular properties by the spectroscopy of laser induced fluorescence (LIF) and flocculation. The effects of optical properties in scattering media have been found by the optical parameters(${\mu}_s$, ${\mu}_a$, ${\mu}_t$). Flocculation is an important step in many solid-liquid separation processes and is widely used. When two particles approach each other, interactions of several colloid particles can come into play which may have major effect on the flocculation and LIF process. The values of scattering coefficient ${\mu}_s$ are large by means of the increasing scattering of scatterer, The values have been found that the slope decays exponentially as a function of concentration from laser source to detector by our experimental result. It may also aid in designing the best model for oil chemistry, bio-pharmaceutical, laser medicine and application of medical engineering on LIF and coagulation in particle transport mode.