• Title/Summary/Keyword: Liquid fuel pool

Search Result 29, Processing Time 0.027 seconds

Electrochemical Behaviors of Bi3+ Ions on Inert Tungsten or on Liquid Bi Pool in the Molten LiCl-KCl Eutectic

  • Kim, Beom Kyu;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • Liquid Bi pool is a candidate electrode for an electrometallurgical process in the molten LiCl-KCl eutectic to treat the spent nuclear fuels from nuclear power plants. The electrochemical behavior of Bi3+ ions and the electrode reaction on liquid Bi pool were investigated with the cyclic voltammetry in an environment with or without BiCl3 in the molten LiCl-KCl eutectic. Experimental results showed that two redox reactions of Bi3+ on inert W electrode and the shift of cathodic peak potentials of Li+ and Bi3+ on liquid Bi pool electrode in molten LiCl-KCl eutectic. It is confirmed that the redox reaction of lithium with respect to the liquid Bi pool electrode would occur in a wide range of potentials in molten LiCl-KCl eutectic. The obtained data will be used to design the electrometallurgical process for treating actinide and lanthanide from the spent nuclear fuels and to understand the electrochemical reactions of actinide and lanthanide at liquid Bi pool electrode in the molten LiCl-KCl eutectic.

Effects of Spray Characteristics of Water Mist on The Extinction of a Liquid Pool Fire (분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향)

  • Kim, Ho-Young;Oh, Sang-Youp;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1591-1599
    • /
    • 2004
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is a small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is l15∼180${\mu}{\textrm}{m}$ with nozzle A and 130∼190${\mu}{\textrm}{m}$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of $O_2$ concentration.

The Effects of Spray Characteristics of Water Mist on the Fire Suppression of Liquid Pool Fire (미분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향)

  • Oh, Sang-Youp;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.215-221
    • /
    • 2003
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is $115{\sim}180{\mu}m$ with nozzle A and $130{\sim}190{\mu}m$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of O2 concentration.

  • PDF

A Study on the Characteristics of Pool Fire (Pool 화재의 연소 특성에 관한 연구)

  • 오규형;나선종;이성은
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.39-44
    • /
    • 2004
  • This study is intended to understand flame behavior of the pool fire. Liquid fuels were acetone, methanol, hexane and heptane which are used in many industries. Diameter of vessel was varied from 50 mm to 400 mm and the vessel was made by stainless steel and copper. Combustion time, temperature of vessel wall and heat flux of flame were measured, and flame behavior was visualized with video camera. Based on the experiment, it was found that the burning velocity and flame height was increased according to increase of vessel diameter, and vortex shedding frequency was inverse proportion to vessel diameter. And the characteristics of pool fire were affected by physical and chemical properties of liquid fuel and the vessel materials.

Simple analytical method for predicting the sloshing motion in a rectangular pool

  • Park, Won Man;Choi, Dae Kyung;Kim, Kyungsoo;Son, Sung Man;Oh, Se Hong;Lee, Kang Hee;Kang, Heung Seok;Choi, Choengryul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.947-955
    • /
    • 2020
  • Predicting the sloshing motion of a coolant during a seismic assessment of a rectangular spent fuel pool is of critical concern. Linear theory, which provides a simple analytical method, has been used to predict the sloshing motion in rectangular pools and tanks. However, this theory is not suitable for the high-frequency excitation problem. In this study, the authors developed a simple analytical method for predicting the sloshing motion in a rectangular pool for a wide range of excitation frequencies. The correlation among the linear theory parameters, influencing on excitation and convective waves, and the excitation frequency is investigated. Sloshing waves in a rectangular pool with several liquid heights are predicted using the original linear theory, a modified linear theory and computational fluid dynamics analysis. The results demonstrate that the developed method can predict sloshing motion over a wide range of excitation frequencies. However, the developed method has the limitations of linear solutions since it neglects the nonlinear features of sloshing motion. Despite these limitations, the authors believe that the developed method can be useful as a simple analytical method for predicting the sloshing motion in a rectangular pool under various external excitations.

Numerical analysis on the rapid fire suppression using a water mist nozzle in a fire compartment with a door opening

  • Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.410-423
    • /
    • 2019
  • Fire suppression using a water mist nozzle directly above an n-Heptane pool in a fire compartment with a door opening was numerically investigated using the Fire Dynamics Simulator (FDS) for the purpose of application in nuclear power plants. Input parameters for the numerical simulation were determined by experimental measurements. Water mist was activated 10 s after the fire began. The sensitivity analysis was conducted for three input parameters: total number of cubic cells of 6032-2,926,400, droplets per second of 1000-500,000, and extinguishing coefficient of 0-100. In a new simple calibration method of this study, the extinguishing coefficient yielding the fire suppression time closest to that measured by experiments was found for use as the FDS simulation input value. When the water mist jet flow made contact with the developed fire, the heat release rate instantaneously increased, and then rapidly decreased. This phenomenon occurred with a displacement of the flame near the liquid fuel pool. Changing the configuration of the door opening with different aspect ratios and opening ratios had impact on the maximum value of the heat release rate due to the flame displacement.

Predicting the Mass Burning Flux of Methanol Pool Fires by Using FDS Model (FDS 모델을 이용한 메탄올 풀 화재의 질량연소플럭스 예측)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.12-18
    • /
    • 2017
  • The present study has been conducted to predict the mass burning flux of methanol pool fire using liquid vaporization model in FDS and examine the effect of thermal properties of liquid fuel such as radiative fraction and mean absorption coefficient. A series of calculation for the pool diameter of 5 cm to 200 cm were performed and the size of computational domain was determined by the scale of the pool diameter. The reference grid size was determined by the grid sensitivity analysis and the computational grids consisted of approximately 750,000 cells. For the methanol pool fire, the mass burning flux predicted by liquid vaporization model of FDS followed the trend of transient characteristics as a function of pool diameter and showed good agreement within measurement uncertainty range of previous studies. The mass burning flux increased with increasing the radiative fraction and the mean absorption coefficient greatly affected on relatively small pool diameter.

A Study on the Flame Behavior of Whirl Eire and Pool Fire (Whirl Fire와 Pool fire의 화염 거동에 관한 연구)

  • Oh Kyu-Hyung;Kang Youn-Ok;Lee Sung-Eun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.45-50
    • /
    • 2004
  • 4-panel of 1m height and 45cm width were fixed on the $40cm{\times}40cm$ bottom plate and the opening of the panel comer was 5cm. Diameter of stainless vessel is loom and its height is 2cm and it located at the center of the bottom plate. 78mL liquid fuel was filled in the vessel and its depth was 1cm. Flame temperature was measured with K type thermocouple, and radiation heat of flame was measured with heat flux meter. Flame height and its behavior was visualized with video camera. and mass burning rate was measured by fuel combustion time. According to the development of fire, flame swirling was begin. From the experiment the mass burning rate was larger and the height of flame was higher than the usual pool fire flame. Flame temperature and heat flux also increased far more than the pool fire. Consequently the swirling air flow through the openings between the panel and thermal buoyance contribute to increase of heat release rate, flame length and mass burning rate.

THE EFFECT OF MICRO/NANOSCALE STRUCTURES ON CHF ENHANCEMENT

  • Ahn, Ho-Seon;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.205-216
    • /
    • 2011
  • Recently, many research studies have investigated the enormous critical heat flux (CHF) enhancement caused by nanofluids during pool boiling and flow boiling. One of the main reasons for this enhancement is nanoparticle deposition on the heated surface. However, in real applications, nanofluids create many problems when used as working fluids because of sedimentation and aggregation. Therefore, artificial surfaces on silicon and metal have been developed to create an effect similar to that of nanoparticle deposition. These modified surfaces have proved capable of greatly increasing the CHF during pool boiling, and good results have also been observed during flow boiling. In this study, we demonstrate that the wetting ability of a surface, i.e., wettability, and the liquid spreading ability (hydrophilic surface property), are key parameters for increasing the CHF during both pool and flow boiling. We also demonstrate that when the fuel surface in nuclear power plants is modified in a similar manner, it has the same effect, producing a large CHF enhancement.

Analysis of Core Disruptive Accident Energetics for Liquid Metal Reactor

  • Suk, Soo-Dong;Dohee Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.117-131
    • /
    • 2002
  • Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of the work to demonstrate the inherent and ultimate safety of conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 MWe pool- type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method and associated computer program, SCHAMBETA, was developed using a modified Bethe-Tait method to simulate the kinetics and thermodynamic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of the energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the SCHAMBETA code for various reactivity insertion rates up to 100 S/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies were also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters.