• 제목/요약/키워드: Liquid ambient

검색결과 283건 처리시간 0.024초

분위기 조건이 Decane 액적의 Soot 생성에 미치는 영향 (Effect of Ambient Conditions on the Soot Generation of Decane Fuel Droplet)

  • 임영찬;서현규
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.211-215
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet soot generation of decane fuel. To achieve this, this paper presents the experimental results on the decane droplet combustion conducted under various ambient pressure($P_{amb}$), and oxygen concentration($O_2$) conditions. At the same time, the experimental study was conducted in terms of soot volume fraction($f_v$) and its maximum value. Also, visualization of single fuel droplet was conducted by high resolution CCD camera and ambient pressure($P_{amb}$) and oxygen concentration($O_2$) was changed by control system. It was revealed that higher ambient pressure($P_{amb}$), and oxygen concentration($O_2$) enhanced the soot generation and improved the maximum soot volume fraction( $f_v$).

주위기체 밀도변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향 (Effect of the Change in Ambient Gas Density on the Mixture Formation Process in Evaporative Free Diesel Spray)

  • 염정국;정성식
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.209-213
    • /
    • 2005
  • The effects of density change of ambient gas on mixture formation process have been investigated in high temperature and pressure field. To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Ambient gas density was selected as experimental parameter. The ambient gas density was changed from $r_a=5.0kg/m^3\;to\;r_a=12.3kg/m^3$ with a high pressure injection system(ECD-U2). For visualization of the experiment phenomenon, a CVC(Constant Volume Chamber) was used in this study. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas.

  • PDF

직접 분사식 연료 분무에서의 기.액상 분리 계측에 관한 연구 (An Experimental Study on the Analysis of Liquid/Vapor Phase in GDI Spray)

  • 장석형;김정호;박경석;진성호;김경수
    • 한국분무공학회지
    • /
    • 제5권4호
    • /
    • pp.57-65
    • /
    • 2000
  • For this research an extension of the LIF technique that the LIEF(Laser Induced Exciplex Fluorescence) technique has been used LIEF technique is the unique method to allows the visualization of fuel vapor phase and liquid phase individually by capturing each signals of them. In this work performed that the basic procedure for advanced LIEF technique using TEA and benzene as dopants md high power KrF excimer laser to excite the dopants. Iso-octane is used as the fuel because it does not absorb light at the laser wavelength. The boiling point of benzene and TEA are $81^{\circ}C\;and89^{\circ}C$, respectively, in comparison to $99^{\circ}C$ for iso-octane. It is observed that the behavior and distribution of high pressed fuel injection from various test condition. The injection pressure is set as 3MPa. and 5MPa. And the ambient pressure of test chamber is atmospheric pressure and 1MPa, the ambient temperature of chamber is room temperature, $300^{\circ}C\;and\;500^{\circ}C$ to imitate the condition of GDI engine cylinder.

  • PDF

Heat Transfer Correlation to Predict the Evaporation of a Water Droplet in Superheated Steam during Reflood Phase of a LOCA

  • Kim, Yoo;Ban, Chang-Hwan
    • 에너지공학
    • /
    • 제9권3호
    • /
    • pp.261-268
    • /
    • 2000
  • A heat transfer correlation to predict the vaporization of a water droplet in highly superheated steam during a loss-of-coolant accident(LOCA) of a nuclear power plant is provided. Vaporization of liquid fuel or water droplets in superheated air or steam and subsequent interface heat transfer between a liquid droplet and superheated gas is typically correlated by way of a Nusselt number as a function of Reynolds number, Prantl number, and in some cases including mass transfer number. Presently available correlations and experimental data of the evaporation of liquid droplets in air or steam are analyzed and a new Nusselt number correlation is proposed taking Schmidt number into consideration in order to account for binary diffusion of the vapor as well, Nu$\_$f/(1+B)$\^$0.7/=2+0.53Sc$\_$f/$\^$-1/5/Re$\_$M/$\^$$\sfrac{1}{2}$/Pr$\_$f/$\^$$\sfrac{1}{3}$/ for which properties are evaluated at film condition except the density of Reynolds number evaluated at ambient condition. Diverse correlations for various combinations of liquid and gas species are put into single equation. The blowing correction factor of (1+B)$\^$0.7/ is confirmed appropriate, and a criterion to distinguish so-called high- and low-temperature condition of ambient gas is set forth.

  • PDF

Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구 (A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images)

  • 윤준규;명광재;차경옥
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

피에조 인젝터 커먼레일 시스템을 이용한 함산소연료의 분무특성에 관한 연구 (An Investigation on a Spray Characteristics of Oxygenated Fuel with a Piezo Injector Common Rail System)

  • 이세준;양지웅;김상일;임옥택
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.171-177
    • /
    • 2012
  • To understand oxygenated fuel characteristics including spray penetration length and spray angle at a real engine ambient pressure condition, DME was injected into a high pressure chamber by a piezo injector common rail system. The piezo injector common rail system was able to apply steady injection pressure, rapid response, and accurate injection quantity. Injection and ambient pressure were varied to confirm a relation with spray form. Using a direct photographing technique, development process of DME spray was captured. DME injection quantity was enlarged linearly as increasing of the injection pressure. In the high pressure chamber, when the injection pressure was enlarged the penetration length and velocity were increased due to a big momentum of fuel particle at the same ambient pressure. When ambient pressure was increased, the DME spray penetration length and velocity were decreased since the high ambient density of nitrogen was acted as a resistance. Although the ambient pressure and injection pressure were varied, each case of spray angle was almost same since the spray angle had a connection of the injector nozzle geometry.

자가조직도와 분산분석을 활용한 결빙 형상과 외기 조건의 관계 분석 (Analysis of Relations between Ice Accretion Shapes and Ambient Conditions by Employing Self-Organization Maps and Analysis of Variance)

  • 손찬규;오세종;이관중
    • 한국항공우주학회지
    • /
    • 제39권8호
    • /
    • pp.689-701
    • /
    • 2011
  • 본 연구에서는 착빙 환경 요소와 결빙 형상 파라미터의 관계를 자가조직도와 분산분석을 활용하여 분석하였다. 결빙 형상에 영향을 미치는 외기 조건으로 자유류 속도, 대기온도, 대기중 물방울 함유량(LWC), 액적의 평균 직경(MVD)을 선정하였다. 그리고 결빙 형상의 특징이 되는 파라미터로 최대 두께, 결빙한계(Icing limit), 결빙 진행 방향, 결빙면적을 선정하였다. 자가 조직도의 결과는 결빙형상 파라미터에 관계가 있는 외기 조건에 대한 정성적인 관계를 제시하였고 분산분석의 결과는 형상 파라미터에 대한 외기 조건의 영향력의 상대적인 크기와 순위를 정량적으로 제시하였다.

A Review on Spray Characteristics of Bioethanol and Its Blended Fuels in CI Engines

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.155-166
    • /
    • 2014
  • This review will be concentrated on the spray characteristics of bioethanol and its derived fuels such as ethanol-diesel, ethanol-biodiesel in compression ignition (CI) engines. The difficulty in meeting the severe limitations on NOx and PM emissions in CI engines has brought about many methods for the application of ethanol because ethanol diffusion flames in engine produce virtually no soot. The most popular method for the application of ethanol as a fuel in CI engines is the blending of ethanol with diesel. The physical properties of ethanol and its derivatives related to spray characteristics such as viscosity, density and surface tension are discussed. Viscosity and density of e-diesel and e-biodiesel generally are decreased with increase in ethanol content and temperature. More than 22% and 30% of ethanol addition would not satisfied the requirement of viscosity and density in EN 590, respectively. Investigation of neat ethanol sprays in CI engines was conducted by very few researchers. The effect of ambient temperature on liquid phase penetration is a controversial topic due to the opposite result between two studies. More researches are required for the spray characteristics of neat ethanol in CI engines. The ethanol blended fuels in CI engines can be classified into ethanol-diesel blend (e-diesel) and ethanol-biodiesel (e-biodiesel) blend. Even though dodecanol and n-butanol are rarely used, the addition of biodiesel as blend stabilizer is the prevailing method because it has the advantage of increasing the biofuel concentration in diesel fuel. Spray penetration and SMD of e-diesel and e-biodiesel decrease with increase in ethanol concentration, and in ambient pressure. However, spray angle is increased with increase in the ethanol percentage in e-diesel. As the ambient pressure increases, liquid phase penetration was decreased, but spray angle was increased in e-diesel. The increase in ambient temperature showed the slight effect on liquid phase penetration, but spray angle was decreased. A numerical study of micro-explosion concluded that the optimum composition of e-diesel binary mixture for micro-explosion was approximately E50D50, while that of e-biodiesel binary mixture was E30B70 due to the lower volatility of biodiesel. Adding less volatile biodiesel into the ternary mixture of ethanol-biodiesel-diesel can remarkably enhance micro-explosion. Addition of ethanol up to 20% in e-biodiesel showed no effect on spray penetration. However, increase of nozzle orifice diameter results in increase of spray penetration. The more study on liquid phase penetration and SMD in e-diesel and e-biodiesel is required.

액체 크로마토그래프법에 의한 대기시료중 미량 알데히드류의 정량 (Determination of Trace Aldehydes in Ambient Air by Liquid Chromatography)

  • 이용근;정태우
    • 한국대기환경학회지
    • /
    • 제11권4호
    • /
    • pp.339-349
    • /
    • 1995
  • The purpose on this study is to optimize the chromatographic determination method of trace aldehydes in ambient air. Carbonyl compounds in urban air were trapped at $C_{18}$ DNPH-coated cartridges, and generated hydrazone derivatives were separated by HPLC and detected by UV-vis spectroscopic detector at 360nm. Formaldehyde and acetaldehyde compounds could be isolated from urban(Seoul) air with more than 95% collection efficiency. The analytical detection limits for formaldehyde and acetaldehyde are 0.06pp $b_{v}$, 0.08pp $b_{v}$ for 108 L air samples, respectively. The precision of this method are 3 .sim. 4%(RSD) for mutiple injection of hydrazone standards. Separation of seven dinitrophenylhydrazones could be achieved in appoximately 20 minutes operation time using $C_{18}$ column with apprepriate eluent. The method was applied to the analysis of aldehydes and ketone in Seoul ambient air. The 24-h ambient levels of formaldehyde, acetaldehyde reached up to 6 .sim. 14 and 3 .sim. 8ppbv, respectively. The daily average concentration ratio were 0.60 for acetaldehyde/formaldehyde.yde.

  • PDF

단일액적의 증발 및 착화특성에 관한 연구 (A Study of Evaporation and Ignition Characteristics of Single Fuel Droplet)

  • 백병준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.551-559
    • /
    • 1998
  • Evaporation and ignition characteristics of fuel droplet have major influences on the efficiency and performance of engine. In the present study the experiment of evaporation and self-ignition of single fuel was performed under the various ambient conditions. An individually suspended droplet of n-heptane n-hexadecane ethyl-alcohol and light oil were employed as a liquid droplet. Evaporation and ignition characteristics were measured by using the video-camera and image processing technique under the various ambient temperatures (up to 1000310 OC)and partial pressure of oxigen(up to 60%) The evaporation curve shows that the droplet life time ignition delay time decreases as the ambient temperature and partial pressure of oxigen increase, The temperature variations of droplet were also reported for various fuel and ambient temperatures. The numerical simulations were carried out to predict droplet diameter and temperature with favorable agreement.

  • PDF