• Title/Summary/Keyword: Liquid air

Search Result 1,744, Processing Time 0.029 seconds

Internal Flow Stability for Tangential Entry Conditions in a Swirl Injector (스월 인젝터에서 접선방향 유입구 조건이 내부유동의 안정성에 미치는 영향에 대한 연구)

  • Kim, Sung-Hyuk;Khil, Tae-Ock;Cho, Seong-Ho;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.30-37
    • /
    • 2008
  • Many theoretical and experimental studies have been conducted to investigate elements of swirl injector hydrodynamics, such as variations in liquid film thickness or air core diameter. From these studies, some theoretical relationships have been established through an approximate analytical solution of flow hydrodynamics in a swirl nozzle. However, experimental studies on elements such as the stability of internal flow have not produced conclusive results. In this study, the stability of the internal flow under tangential entry conditions was examined by visualizing the formation of the air core in the swirl chamber and measuring the liquid film thickness in the orifice.

Pulse-Sequence Analysis of Discharges in Air, Liquid and Solid Insulating Materials

  • Suwayno, Suwayno;Mizutani, Teruyoshi
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.528-533
    • /
    • 2006
  • Electrical discharges may occur in gas, liquid as well as solid insulating materials. This paper describes the investigation results on the discharges in air, silicone oil and low density polyethylene (LDPE) using needle plane electrode system under AC voltage of 50 Hz. The experimental results showed that for discharge in air (corona), discharge pulses were concentrated around the peak of applied voltage at negative half cycle. For silicone oil positive as well as negative discharges were observed which concentrated around the peak of applied voltage. The positive pulse number was smaller but the magnitude was higher than that of negative discharge. Discharges in void took place at wider range of phase of applied voltage. The unbalance in pulse number and magnitude similar to that of oil discharges were observed. For electrical treeing in LDPE, the discharges were spread before the zero cross of the applied voltage up to the peak at both positive and negative half cycles. The discharge pulse sequence analysis indicated that the PD occurrence in air, oil and void were strongly affected by the magnitude of applied voltage. However, for electrical treeing it was observed that the discharge occurrence was strongly affected by the time derivative of the applied voltage (dv/dt).

Experimental Evaluation Method of Mass Transfer Coefficient on Biotrickling Filtration for Air Pollution Control (대기오염제어를 위한 생물살수여과법에서 물질전달계수 실험평가방법에 관한 연구)

  • Won, Yang-Soo;Jo, Wan-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.482-488
    • /
    • 2015
  • Biological treatment is promising alternative to conventional air pollution control method. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing volatile organic compounds and odor. The studies of mass transfer in biotrickling filters for air pollution control were of importance in order to control and optimize the purification process. The objectives of this study were to develop the experimental methodologies to evaluate the mass transfer coefficients of gas/liquid(trickling liquid), gas/solid(biomass) and liquid/solid in three phase biotrickling filtration. Also, this study characterized the influence factors on mass transfer such as dynamic holdup volume, gas/liquid flow rate ratio, biomass weight in reactor and recirculation rate of trickling medium for each phase of biotrickling filter.

A Study on the Thermal Characteristics of Finned-tube Heat Exchanger by Using the Liquid Crystal Technique (액정법을 이용한 휜-관 열교환기 휜의 열적 특성에 관한 연구)

  • 강희찬;김무환;김명수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.414-421
    • /
    • 2000
  • This study was discussed about the thermal characteristics of finned tube heat exchanger having two row used in the air-conditioning application. Pressure drop and heat transfer coefficient were measured and investigated for the 3 times models of plain fin. Also the temperature distribution and heat conduction in the fin was measured by using the liquid crystal method. The surface temperature of rear row was nearly constant, and heat conduction in the fin was stronger near the front row than the rear row.

  • PDF

Measurement of the Thermal Characteristics of Finned-tube Heat Exchanger Fin by Using the Liquid Crystal Technique

  • Kang, Hie-Chan;Kim, Moo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.28-35
    • /
    • 2001
  • This study deals with the thermal characteristics of finned-tube heat exchanger having two rows used in the air-conditioning application. Pressure drop and heat transfer coefficient were measured by using the three times models of plain fin and compared with the theory. Also the temperature distribution and heat conduction in the fin was measured by using the liquid crystal method. The surface temperature of rear row was nearly constant, and heat conduction in the fin was stronger near the front row than the rear row.

  • PDF

CFD Analysis on Two-phase Flow Behavior of Liquid Water in Cathode Channel of PEM Fuel Cell (PEM 연료전지 공기극 유로에서 물의 가동에 대한 CFD 해석)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.8-15
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid [VOF] multi-phase model was conducted to understand the two-phase flow behavior of liquid water in cathode gas channels. The liquid water transport in $180^{\circ}{\Delta}$ bends was investigated, where the effects of surface characteristics (hydrophilic and hydrophobic surfaces], channel geometries (rectangular and chamfered corners], and air velocity in channel were discussed. The two-phase flow behavior of liquid water with hydrophilic channel surface and that with hydrophobic surface was found very different; liquid water preferentially flows along the corners of flow channel in hydrophilic channels while it flows in rather spherical shape in hydrophobic channels. The results showed that liquid water transport was generally enhanced when hydrophobic channel with rounded corners was used. However, the surface characteristics and channel geometries became less important when air velocity was increased over 10m/s. This study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreezing Solution (마이크로 부동액막을 이용한 착상방지에 관한 실험적 연구)

  • Chang Young- Soo;Yun Won -Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.459-467
    • /
    • 2005
  • The effect of anti freezing solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreezing solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation and reduce the thermal resistance across the film. A porous layer coating technique is adopted to improve the wettedness of the anti freezing solution on a parallel plate heat exchanger. The antifreezing solution spreads widely on the heat exchanger surface with 100 $\mu$m thickness by the capillary force resulting from the porous structure. It is observed that the antifreezing solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by thin liquid film are only $1\~2\%$ compared with those for non-liquid film surface.

On the Behavior of Liquid Droplets Depending upon ALR in Two-phase Internal Mixing Nozzle Jet (2상 내부 혼합형 노즐분사에서 ALR 변화에 따른 액적의 거동)

  • Kim Kyu Chul;Namkung Jung Hwan;Lee Sang Jin;Rho Byung Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.385-388
    • /
    • 2002
  • The researches of a two-phase atomizers have been carried out in the field of automotive and aerospace industries in order to improve the atomization performance of the liquid droplets ejecting from these nozzles. The smaller droplets have the advantages of the reduction of environmental pollution matter and effective use of energy through the improvement of heat and mass transfer efficiency. Thus, to propose the basic information of two-phase flow, an internal mixing atomizer was designed, its shape factor was 0.6 and the liquid feeding hole was positioned at the center of the mixing tube which was used to mix the air and liquid. The experimental work was performed in the field after the nozzle exit orifice. The measurement of the liquid droplets was made by PDPA system. This system can measure the velocity and size of the droplets simultaneously. The number of the droplets used in this calculation was set to 10,000. The flow patterns were regulated by ALR (Air to Liquid mass Ratio). ALR was varied from 0.1024 to 0.3238 depending on the mass flow rate of the air. The analysis of sampling data was mainly focused on the spray characteristics such as flow characteristics distributions, half-width of spray, RMS, and turbulent kinetic energy with ALR.

  • PDF

An Experimental Study on the Trajectory Characteristics of Liquid Jet with Canted Injection Angles in Crossflow (수직분사제트에서 다양한 분사각도의 분무궤적 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • The liquid column and spray trajectory have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle were varied to provide of jet operation conditions. The Pulsed Shadowgraph Photography and Planar Liquid Laser Induced Fluorescence technique was used to determine the injection characteristics in a subsonic crossflow of air. And the mainly objectives of this research was to get a empirical formula of liquid column and spray region trajectory with forward and reversed injection of air stream. As the result, This research has been shown that each trajectories were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories has been some different of drag coefficient results between forward and reversed angled injection.