• Title/Summary/Keyword: Liquid Transient

Search Result 396, Processing Time 0.022 seconds

Stability and Thermo-physical Properties of Nanofluids and Its Applications (나노유체의 분산안정성 및 열물성치와 그 응용에 관한 연구)

  • Hwang, Y.;Lee, K.;Kim, K.;Lee, J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.474-478
    • /
    • 2008
  • It has been shown that a nanofluid consisting of nanoparticles dispersed in base fluid has much higher effective thermal conductivity than pure fluid. In this study, four kinds of nanofluids such as multiwalled carbon nanotube (MWCNT) in water, CuO in water, SiO2in water, and CuO in ethylene glycol, are produced. Their thermal conductivities are measured by a transient hot-wire method. The thermal conductivity of water-based MWCNT nanofluid is shown to be increased by up to 11.3% at a volume fraction of 0.01. The measured thermal conductivities of MWCNT nanofluids are higher than those calculated with Hamilton-Crosser's model due to neglecting solid-liquid interaction at the interface. The results show that the thermal conductivity enhancement of nanofluids depends on the thermal conductivities of both particles and the base fluid. Stability of nanofluids is estimated by UV-vis spectrum analysis. Stability of nanofluid depends on the type of base fluid and the suspended particles. Also it can be improved in addition of a surfactant.

  • PDF

Transient rheological probing of PIB/hectorite-nanocomposites

  • Sung, Jun-Hee;Mewis, Jan;Moldenaers, Paula
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • Clay suspensions in liquid polymers exhibit a time-dependent behaviour that includes viscoelastic as well as thixotropic features. Because of the presence of interacting clay platelets, particulate networks can develop, which are broken down during flow and rebuild upon cessation of the flow. Here, the use of thixotropic techniques in probing flow-induced structures in nanocomposites is explored with data on a hectorite-poly(isobutylene) model system. By means of fast stress jump measurements the hydrodynamic contributions to the steady state stresses are determined as well as those caused by the stretching of the clay floes. Flow reversal measurements do not provide a clear indication of flow-induced anisotropy in the present case. The recovery of the clay microstructure upon cessation of flow is followed by means of overshoot and dynamic measurements. The development of a particulate network is detected by the appearance and growth of a low frequency plateau of the storage moduli. The modulus-frequency curves after various rest times collapse onto universal master curves, regardless of the pre-shear history or temperature. The scaling factors for this master curve are the crossover parameters. The crossover moduli are nearly a linear function of the crossover frequency, the relation being identical for recovery after shearing at different shear rates. This function depends, however, on temperature.

A Study on the Optimum Bonding Preparation Condition of Single Crystal Superalloy (단결정 초내열합금의 재결정 방지를 위한 접합 전처리 조건에 관한 연구)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.191-199
    • /
    • 2001
  • The oxidation and recrystallization behaviors of Ni-base single crystal superalloy, CMSX-2 were investigated to determine the condition of the preparation for transient liquid phase (TLP) bonding operations. The faying surfaces of CMSX-2 were worked by the shot peening, fine cutting and mechanical polishing treatments and the degree of working of treated surfaces was evaluated by the hardness test and X-ray diffraction method CMSX-2 was heat-treated at 1,173∼1.589k for 3.6ks in vacuum of 4mPa. The mechanically polished surface was slightly oxidized after heat treatment even in the vacuum atmosphere of 4mPa. The thickness of an oxide film increased with increasing the heating temperature and the surface roughness of the faying surface. Recrystallization occurred at the surface after heat treatment at above 1,423K when the hardness was increased more than Hv600 by the shot peening treatment while the mechanically polished or fine cut surfaces didn't recrystallized. Based on these results, it was clearfied that the mechanically polishing with fine abrasive grit could be used for the preparation of faying surface of CMSX-2 before bonding operation.

  • PDF

Study on The Anti-Shock Performance Evaluation of TFT-LCD module for Mobile IT Devices (이동형 정보통신 기기용 화면표시 장치의 내충격 평가 방법 연구)

  • Kim Byung-Sun;Kim Jung-Woo;Lee Dock-Jin;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun;Chu Young-Bee;Koo Ja-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.130-137
    • /
    • 2006
  • TFT-LCD(Thin Film Transistor Liquid Crystal Display) module is representative commercial product of FPD(Flat Panel Display). Thickness of TFT-LCD module is very thin. It is adopted for major display unit for IT devices such as Cellular Phone, Camcorder, Digital camera and etc. Due to the harsh user environment of mobile IT devices, it requires complicated structure and tight assembly. And user requirements for the mechanical functionalities of TFT-LCD module become more strict. However, TFT-LCD module is normally weak to high level transient mechanical shock. Since it uses thin crystallized panel. Therefore, anti-shock performance is classified as one of the most important design specifications. Traditionally, the product reliability against mechanical shock is confirmed by empirical method in the design-prototype-drop/impact test-redesign paradigm. The method is time-consuming and expensive process. It lacks scientific insight and quantitative evaluation. In this article, a systematic design evaluation of TFT-LCD module for mobile IT devices is presented with combinations of FEA and testing to support the optimal shock proof display design procedure.

Numerical Simulation of Bubble and Pore Generations by Molten Metal Flow in Laser-GMA Hybrid Welding (레이저-GMA 하이브리드 용접에서 유동에 의한 기포 및 기공 형성 해석)

  • Cho, Won-Ik;Cho, Jung-Ho;Cho, Min-Hyun;Lee, Jong-Bong;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.67-73
    • /
    • 2008
  • Three-dimensional transient simulation of laser-GMA hybrid welding involving multiple physical phenomena is conducted neglecting the interaction effect of laser and arc heat sources. To reproduce the bubble and pore formations in welding process, a new bubble model is suggested and added to the established laser and arc welding models comprehending VOF, Gaussian laser and arc heat source, recoil pressure, arc pressure, electromagnetic force, surface tension, multiple reflection and Fresnel reflection models. Based on the models mentioned above, simulations of laser-GMA hybrid butt welding are carried out and besides the molten pool flow, top and back bead formations could be observed. In addition, the laser induced keyhole formation and bubble generation duo to keyhole collapse are investigated. The bubbles are ejected from the molten pool through its top and bottom regions. However, some of those are entrapped by solid-liquid interface and remained as pores. Those bubbles and pores are intensively generated when the absorption of laser power is largely reduced and consequently the full penetration changes to the partial penetration.

Hygrothermal Fracture Analysis in Dissimilar Materials

  • Ahn, Kook-Chan;Lee, Tae-Hwan;Bae, Kang-Yul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.65-72
    • /
    • 2001
  • This paper demonstrates an explicit-implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for an existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory. Darcy's law is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full Newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

Structural Effects of Geometric Parameters on Liquid Rocket Turbopump Turbine Blades (터보펌프 터빈 블레이드 형상 요소의 구조적 영향)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Structural effects of several geometric parameters such as shroud thickness, edge roundness and fillet radius of turbopump turbine blade were investigated throughout transient finite element analyses. Usually shroud is inserted to increase aerodynamic efficiency, but blocks deformation of blades. Therefore it can increase stress level in a structural point of view. Likewise, edge roundness and fillet between blades are also parameters where aerodynamics and structural mechanics should compromise. In this study, overall stress levels according to the geometric parameters were thoroughly investigated and the results could be utilized to determine optimal geometries.

A REVIEW OF INHERENT SAFETY CHARACTERISTICS OF METAL ALLOY SODIUM-COOLED FAST REACTOR FUEL AGAINST POSTULATED ACCIDENTS

  • SOFU, TANJU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.227-239
    • /
    • 2015
  • The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, doublefault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperature profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel-coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.

EVALUATION OF THE APPLICABLE REACTIVITY RANGE OF A REACTIVITY COMPUTER FOR A CANDU-6 REACTOR

  • Lee, Eun Ki;Park, Dong Hwan;Lee, Whan Soo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.183-194
    • /
    • 2014
  • Recently, a CANDU digital reactivity computer system (CDRCS) to measure the worth of the liquid zone controller in a CANDU-6 was developed and successfully applied to a physics test of refurbished Wolsong Unit 1. In advance of using the CDRCS, its measureable reactivity range should be investigated and confirmed. There are two reasons for this investigation. First, the CANDU-6 has a larger reactor and smaller excore detectors than a general PWR and consequently the measured reactivity is likely to reflect the peripheral power variation only, not the whole core. The second reason is photo neutrons generated from the interaction of the moderator and gamma-rays, which are never considered in a PWR. To evaluate the limitations of the CDRCS, several tens of three-dimensional steady and transient simulations were performed. The simulated detector signals were used to obtain the dynamic reactivity. The difference between the dynamic reactivity and the static worth increases in line with the water level changes. The maximum allowable reactivity was determined to be 1.4 mk in the case of CANDU-6 by confining the difference to less than 1%.

Numerical Study About Compression Effect of Porous Electrodes on the Performance of Redox Flow Batteries (다공성 전극의 압축률이 레독스흐름전지의 성능에 미치는 영향에 대한 수치해석적 연구)

  • Jeong, Daein;Jung, Seunghun
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • When designing a redox flow battery system, compression of battery stack is required to prevent leakage of electrolyte and to reduce contact resistance between cell components. In addition, stack compression leads to deformation of the porous carbon electrode, which results in lower porosity and smaller cross-sectional area for electrolyte flow. In this paper, we investigate the effects of electrode compression on the cell performance by applying multi-dimensional, transient model of all-vanadium redox flow battery (VRFB). Simulation result reveals that large compression leads to greater pressure drop throughout the electrodes, which requires large pumping power to circulate electrolyte while lowered ohmic resistance results in better power capability of the battery. Also, cell compression results in imbalance between anolyte and catholyte and convective crossover of vanadium ions through the separator due to large pressure difference between negative and positive electrodes. Although it is predicted that the battery power is quickly improved due to the reduced ohmic resistance, the capacity decay of the battery is accelerated in the long term operation when the battery cell is compressed. Therefore, it is important to optimize the battery performance by taking trade-off between power and capacity when designing VRFB system.