• 제목/요약/키워드: Liquid Silicon

Search Result 333, Processing Time 0.031 seconds

A NUMERICAL ANALYSIS OF CZOCHRALSKI SINGLE CRYSTAL GROWTH OF SILICON WITH MISALIGNED CUSP MAGNETIC FIELDS (Misaligned된 비균일자장이 인가된 초크랄스키 실리콘 단결정성장에 대한 수치적 해석)

  • Kim, Chang Nyung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.121-131
    • /
    • 2000
  • Melt flow, heat and mass transfer of oxygen have been analyzed numerically in the process of Czochralski single crystal growth of silicon under the influence of misaligned cusp magnetic fields. Since the silicon melt in a crucible for crystal growth is of high temperature and of highly electrical-conducting, experimentation method has difficulty in analyzing the behavior of the melt flow. A set of simultaneous nonlinear equations including Navier-Stokes and Maxwell equations has been used for the modelling of the melt flow which can be regarded as a liquid metal. Together with the melt flow which forms the Marangoni convection, a flow circulation is observed near the comer close both to the crucible wall and the free surface. The melt flow tends to follow the magnetic lines instead of traversing the lines. These flow characteristics helps the flow circulation exist. Mass transfer characteristics influenced by the melt flow has been analyzed and the oxygen absorption rate to the crystal has been calculated and turned out to be rather uniform than in the case of an aligned magnetic field.

  • PDF

A Study on the Zeta Potential Measurement and the Stability Analysis of Nano Fluids using a Particle Image Processing System (입자 영상 처리 시스템을 이용한 콜로이드 입자의 제타포텐셜 측정 및 나노유체 분산 특성 연구)

  • Lee, J.K.;Kim, S.C.;Kim, H.J.;Lee, C.G.;Ju, C.H.;Lee, L.C.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Zeta potential measurements of colloid particles suspended in a liquid are performed by a Zeta Meter developed. There are many applications of colloid stability in spray technology, paints, wastewater treatment, and pharmaceuticalse. Zeta potentials of charged particles are obtained by measuring the electrophoretic velocities of the particles using video enhanced microscopy and image analysis program. The values of zeta potential of polystyrene latex(PSL), $silica(SiO_2)$M, polyvinylidence difluoride(PVDF), silicon nitride, and alumina particles in deionized (DI) water were measured to be -40.5, -31.9, -25.2, -15.1 and -10.1mV, respectively. The particles having high zeta potential less than -20 mV are stable in DI water, because the double layers of them have strong repulsive forces mutually, and the particles having low zeta potential over -20mV are unstable due to Van Der Waals forces. Silica(>20nm), PSL, aluminum and PVDF particles were found to be stable that would remain separate and well disperse, while silicon nitride and alumina particles were found to be unstable that would gradually agglomerate in DI water.

  • PDF

Photoalignment of Liquid Crystal on Silicon Microdisplay

  • Zhang, Baolong;Li, K. K.;Huang, H. C.;Chigrinov, V.;Kwok, H. S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.295-298
    • /
    • 2003
  • Reflective mode liquid crystal on silicon (LCoS) microdisplay is the major technology that can produce extremely high-resolution displays. A very large number of pixels can be packed onto the CMOS circuit with integrated drivers that can be projected to any size screen. Large size direct-view thin film transistor (TFT) LCDs becomes very difficult to make and to drive as the information content increases. However, the existing LC alignment technology for the LCoS cell fabrication is still the mechanical rubbing method, which is prone to have minor defects that are not visible normally but can be detrimental if projected to a large screen. In this paper, application of photo-alignment to LCoS fabrication is presented. The alignment is done by three-step exposure process. A MTN $90^{\circ}$ mode is chose as to evaluate the performance of this technique. The comparison with rubbing mode shows the performance of photo-alignment is comparable and even better in some aspect, such as sharper RVC curve and higher contrast ratio.

  • PDF

New Materials Based Lab-on-a-Chip Microreactors: New Device for Chemical Process

  • Kim, Dong-Pyo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.51-51
    • /
    • 2012
  • There is a growing interest in innovative chemical synthesis in microreactors owing to high efficiency, selectivity, and yield. In microfluidic systems, the low-volume spatial and temporal control of reactants and products offers a novel method for chemical manipulation and product generation. Glass, silicon, poly(dimethylsiloxane) (PDMS), and plastics have been used for the fabrication of miniaturized devices. However, these materials are not the best due to either of low chemical durability or expensive fabrication costs. In our group, we have recently addressed the demand for economical resistant materials that can be used for easy fabrication of microfluidic systems with reliable durability. We have suggested the use of various specialty polymers such as silicon-based inorganic polymers and fluoropolymer, flexible polyimide (PI) films that have not been used for microfluidic devices, although they have been used for other areas. And inexpensive lithography techniques were used to fabricate Lab-on-a-Chip type of microreactors with differently devised microchannel design. These microreactors were demonstrated for various synthetic reactions: liquid, liquid-gas organic chemical reactions in heterogeneous catalytic processes, syntheses of polymer and non-trivial inorganic materials. The microreactors were inert, and withstand even harsh conditions, including hydrothermal reaction. In addition, various built-in microstructures inside the microchannels, for example Pd decorated peptide nanowires, definitely enhance the uniqueness and performance of microreactors. These user-friendly Lab-on-a-Chip devices are useful alternatives for chemist and chemical engineer to conventional chemical tools such as glass.

  • PDF

Fabrication of β-SiAlONs by a Reaction-Bonding Process Followed by Post-Sintering

  • Park, Young-Jo;Noh, Eun-Ah;Ko, Jae-Woong;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.452-455
    • /
    • 2009
  • A cost-effective route to synthesize $\beta$-SiAlONs from Si mixtures by reaction bonding followed by post-sintering was investigated. Three different z values, 0.45, 0.92 and 1.87, in $Si_{6-z}Al_zO_zN_{8-z}$ without excess liquid phase were selected to elucidate the mechanism of SiAlON formation and densification. For RBSN (reaction-bonded silicon nitride) specimens prior to post-sintering, nitridation rates of more than 90% were achieved by multistep heating to $1400^{\circ}C$ in flowing 5%$H_2$/95%$N_2$; residual Si was not detected by XRD analysis. An increase in density was acquired with increasing z values in post-sintered specimens, and this tendency was explained by the presence of higher amounts of transient liquid phase at larger z values. Measured z values from the synthesized $\beta$-SiAlONs were similar to the values calculated for the starting compositions. Slight deviations in z values between measurements and calculations were rationalized by a reasonable application of the characteristics of the nitriding and post-sintering processes.

Development of Small Flat Plate Type Cooling Device (소형의 평판형 냉각장치 개발)

  • Moon, Seok-Hwan;Hwang, Gunn;Kang, Seung-Youl;Cho, Kyoung-Ik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.614-619
    • /
    • 2010
  • Recently, a problem related to the thermal management in portable electronic and telecommunication devices is becoming issued. That is due to the trend of a slimness of the devices, so it is not easy to find the optimal thermal management solution for the devices. From now on, a pressed circular type cooling device has been mainly used, however the cooling device with thin thickness is becoming needed by the inner space constraint of the applications. In the present study, the silicon flat plate type cooling device with the separated vapor and liquid flow path was designed and fabricated. The normal isothermal characteristics created by vapor-liquid phase change was confirmed through the experimental study. The cooling device with 70 mm of total length showed 6.8 W of the heat transfer rate within the range of $4{\sim}5^{\circ}C/W$ of thermal resistance. In the future, it will be possible to develop the commercialized cooling device by revising the fabrication process and enhancing the thermal performance of the silicon and glass cooling device.

Fundamental parameters of nanoporous filtration membranes

  • Wei Li;Xiaoxu Huang;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.115-120
    • /
    • 2023
  • The design theory for nanoporous filtration membranes needs to be established. The present study shows that the performance and technical advancement of nanoporous filtration membranes are determined by the fundamental parameter I (in the unit Watt1/2) which is formulated as a function of the shear strength of the liquid-pore wall interface, the radius of the filtration pore, the membrane thickness, and the bulk dynamic viscosity of the flowing liquid. This parameter determines the critical power loss on a single filtration pore for initiating the wall slippage, which is important for the flux of the membrane. It also relates the membrane permeability to the power cost by the filtration pore. It is shown that for biological cellular membranes its values are on the scale 1.0E-8Watt1/2, for mono-layer graphene membranes its values are on the scale 1.0E-9Watt1/2, and for nanoporous membranes made of silica, silicon nitride or silicon carbonized its values are on the scale 1.0E-5Watt1/2. The scale of the value of this parameter directly measures the level of the performance of a nanoporous filtration membrane. The carbon nanotube membrane has the similar performance with biological cellular membranes, as it also has the value of I on the scale 1.0E-8Watt1/2.

MHD Pressure Drop of a Liquid-Metal Flow under a Transverse Magnetic Field (자기장하의 액체금속 유동의 차압 측정)

  • Cha, Jae-Eun;Kim, Hee-Reyoung;Kim, Jong-Man;Nam, Ho-Yoon;Kim, Sung-O;Kim, Byung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2638-2641
    • /
    • 2007
  • The magnetohydrodynamic(MHD) pressure drop along a liquid sodium flow was measured in a rectangular duct under a transverse magnetic field. The test section was made of a 3 mm thick stainless steel SUS304 with a $74{\times}5mm^2$ rectangular flow channel. The range of experimental parameters was roughly B=0${\sim}$0.18T and U=0${\sim}$0.9m/s at around $200^{\circ}C$. The differential pressure was measured by a diaphragm seal-type pressure transmitter filled with a high temperature silicon oil within 0.1MPa. The experimental results show a similar pressure drop with the theoretical estimation according to a change of the flow velocity and the magnetic field.

  • PDF

Dielecrtric and Voltage Holding Properties of the Half-V-shaped Switching Ferroelectric Liquid Crystal Mode Driven by Active Matrix

  • Choi, Suk-Won;Kim, Hong-Chul;Jeong, Woo-Nam;Seo, Chang-Ryong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1121-1124
    • /
    • 2003
  • For high quality displays, analog responding liquid crystals with spontaneous polarization ($P_{s}$) need to be coupled with active matrix driving schemes. We have characterized the half-V-shaped switching ferroelectric liquid crystal mode (half-V FLC mode) in terms of dielectiric and voltage holding properties. Research on these switching properties provided us with the technology for switching half-V FLC mode FLCs by using amorphous silicon TFTs.

  • PDF

Dynamic Pixel Models for a-Si TFT-LCD and Their Implementation in SPICE

  • Wang, In-Soo;Lee, Gi-Chang;Kim, Tae-Hyun;Lee, Won-Jun;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.633-636
    • /
    • 2012
  • A dynamic analysis of an amorphous silicon (a-Si) thin film transistor liquid crystal display (TFT-LCD) pixel is presented using new a-Si TFT and liquid crystal (LC) capacitance models for a Simulation Program with Integrated Circuit Emphasis (SPICE) simulator. This dynamic analysis will be useful when predicting the performance of LCDs. The a-Si TFT model is developed to accurately estimate a-Si TFT characteristics of a bias-dependent gate to source and gate to drain capacitance. Moreover, the LC capacitance model is developed using a simplified diode circuit model. It is possible to accurately predict TFT-LCD characteristics such as flicker phenomena when implementing the proposed simulation model.