• Title/Summary/Keyword: Liquid Scintillation Counter (LSC)

Search Result 27, Processing Time 0.021 seconds

QA/QC for 222Rn analysis in groundwater (지하수 중 222Rn 분석을 위한 정도관리)

  • Jeong, Do Hwan;Kim, Moon Su;Kim, Hyun Koo;Kim, Hye Jin;Park, Sun Hwa;Han, Jin Seok;Ju, Byoung Kyu;Jeon, Sang Ho;Kim, Tae Seung
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.86-90
    • /
    • 2013
  • $^{222}Rn$ concentrations in the groundwater samples without standard material due to the short half-life (3.82 day) were measured through the establishment of the counting efficiency of LSC (Liquid Scintillation Counter) using a standard source of $^{226}Ra$. This study for Quality Assurance/Quality Control (QA/QC) of $^{222}Rn$ analysis was performed to analyze blank samples, duplicate samples, samples of groundwater sampling before and after. In-situ blank samples collected were in the range of 0.44~6.28 pCi/L and laboratory samples were in the range of 1.66~4.95 pCi/L. Their correlation coefficient was 0.9691 and the source contamination from sampling, migration and keeping of samples were not identified. The correlation coefficient between original and duplicate samples from 65 areas was 0.9987. Because radon is an inert gas, in case of groundwater sampling, it is considered to affect the radon concentration. We analyzed samples separately by groundwater sampling before and after using distilled water, but there is no significant difference for $^{222}Rn$ concentrations in distilled waters of two types.

NDMA(N-nitrosodimethylamine) Removal Uising Membrane at Aerobic and Anaerobic Conditions (호기/혐기 조건에서 Membrane을 이용한 NDMA(N-nitrosodimethylamine)제거)

  • Kim, Hui-Joo;Chung, Jin-Wook;Choi, Chang-Kyoo;Kim, Moon-Il
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.417-420
    • /
    • 2008
  • Recently, the interest in NDMA(N-nitrosodimethylamine) has increased due to its recognition as a pollutant by Ontario Ministry of Environment and Energy and California Department of Health Sciences. It is, in fact, one of the DBPs(Disinfection By-products) which appears due to chlorination and is reported to be fatal if exposed continuously to human body. Due to uncertainty in mechanism to remove it, its treatment is not yet carried out. In this experiment, treatment of biological NDMA is carried out by letting it adsorbed on Granular Sludge and then filtering the medium through MF(Microfiltration) and UF(Ultrafiltration) membranes. Granular Sludge is adapted to aerobic and anaerobic conditions for 7 days and the experimental conditions are MLSS of 8000mg/L, COD of 250mg/L, TN of 12.5mg/L, and TP of 2.5mg/L. Several batch tests were carried out and samples were collected with the interval of 1 hour. Samples were measured by LSC(Liquid scintillation counter) after filtering by MF and UF. In batch test with granular sludge the permeate concentrations(removal efficiencies) of NDMA by MF and UF were 71.7ng/L(32.0%) and 62.0ng/L(43.7%) at aerobic state, and 52.0ng/L(49.2%) and 47.6ng/L(58.9%) at anaerobic state, respectively. Hence, UF membrane showed about 10% more removal efficiency than MF and removal efficiency at anaerobic condition was 15% more than that at aerobic condition.

  • PDF

Radioactivity of biological samples of patients treated with 90Y-DOTATOC

  • Marija Z. Jeremic;Milovan D. Matovic;Nenad R. Mijatovic;Suzana B. Pantovic;Dragana Z. Krstic;Tatjana B. Miladinovic;Dragoslav R. Nikezic
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3815-3821
    • /
    • 2023
  • Dosimetric studies in Nuclear Medicine are very important, especially with new therapeutic methods, the number of which has increased significantly with the Theranostic approach (determining diagnostic-therapeutic pairs where similar molecules are labelled with different isotopes in order to diagnose and treat malignant diseases). Peptide receptor radionuclide therapy (PRRT) has been used successfully for many years to treat neuroendocrine tumors (NET). 90Y-DOTATOC is one of the radiopharmaceuticals used frequently in this type of therapy. In this work, blood and urine samples from 13 patients treated with 90Y-DOTATOC were measured by a liquid scintillation beta counter (LSC). Calibration of the beta counter for this type of measurement was done and all results are presented in the paper. The presented paper also provides a methodology for determining the measurement uncertainty for this type of measurement. Immediately after the administration of radiopharmaceuticals, the activity in the blood was different from 6.31% to 88.9% of the applied radioactivity, while 3 h after the termination of the application, the average value of radiopharmaceuticals in the blood was only 3.84%. The activity in the excreted urine depended on the time when the patients urinated after the therapy. It was measured that as much as 58% of the applied radioactivity was excreted in the first urine after the therapy in a patient who urinated 4.5 h after the completed application of the therapy. In most patients, the highest urine activity was in the first 10 h after the application, while the activities after that time were negligibly low. The described methodology of measuring and evaluating activity in blood and excreted urine can be applied to other radiopharmaceuticals used in nuclear medicine. It could be useful for researchers for dosimetric assessments in clinical application of PRRT.

A Study on the Variation of Rn-222 Concentration in Groundwater at Busan-Geumjeong area (부산 금정구지역의 지하수에 포함된 라돈농도 변화 연구)

  • Cho, Jungg-Sook;Lee, Hyo-Min;Kim, Sun-Woong;Kim, Jin-Seop
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.149-158
    • /
    • 2012
  • In this paper, we measured the variations of radon concentrations in groundwater using low-level Liquid Scintillation Counter (LSC), an instrument for analyzing the alpha and beta radionuclides at its 10 sites around the Kumjung-Gu, north-western of Busan. Optimization of Pulse Shape Analyzer (PSA) to determinate the highest value of figure of merit (FM) was decided using Quantulus 1200 LSC with radium-226 source, the optimal PSA level was shown in the range of 100 to 110. The results show that the Minimum Detectable Activity (MDA) of radon concentrations is 0.61 $Bq{\cdot}L^{-1}$ for 20 minutes in PSA level. We find that the average radon concentration in groundwater is high in granitic rock area and low in volcanic rock area. (Biotite granite : 191.39 $Bq{\cdot}L^{-1}$, Micro graphic granite : 141.88 $Bq{\cdot}L^{-1}$, Adamellite : 92.94 $Bq{\cdot}L^{-1}$, Andesite (volcanic) : 35.35 $Bq{\cdot}L^{-1}$). No significant seasonal variation pattern is observed from the long-term variation analysis from 10 selected sites. We have not seen the significant correlation of radon concentration to groundwater temperature, atmospheric temperature, atmospheric pressure and rainfall. The concentration variation is probably caused by more complex factors and processes.

Natural Reduction Characteristics of Radon in Drinking Groundwater (음용 지하수 중 라돈 자연저감 특성)

  • Noh, Hoe-Jung;Jeong, Do-Hwan;Yoon, Jeong-Ki;Kim, Moon-Su;Ju, Byoung-Kyu;Jeon, Sang-Ho;Kim, Tae-Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • To investigate the natural reduction characteristics of radon with a short half-life (3.82 day) in drinking Qgroundwater, we analyzed the changes of radon concentrations of groundwater, waters in storage tanks, and tap waters from the small-scale groundwater-supply systems (N = 301) by LSC (Liquid Scintillation Counter). We also analyzed the concentrations of uranium (half-life 4.5 billion years) in the waters by ICP/MS to compare with natural reduction of radon concentration. The radon concentrations of 68 groundwater-supply systems occupying 22.6% of the total samples exceeded the US EPA's Alternative Maximum Contaminant Level (AMCL : 4,000 pCi/L), with the average radon concentration of 7,316 pCi/L (groundwaters), 3,833 pCi/L (tank waters) and 3,407 pCi/L (tap waters). Compared to the radon levels of pumped groundwaters, those of tank and tap waters naturally reduced significantly down to about 50%. Especially, in case of 29 groundwater-supply systems with the groundwater radon concentrations of 4,000~6,000 pCi/L, average radon concentrations of the tank and tap waters naturally decreased down to the AMCL. Therefore this study implies that radon concentrations of drinking groundwater can be effectively reduced by sufficient storage and residence in tanks.

Biodistribution and pharmacokinetic evaluation of Korean Red Ginseng components using radioisotopes in a rat model

  • Sung-Won Kim;Byung-Cheol Han;Seung-Ho So;Chang-Kyun Han;Gyo In;Chae-Kyu Park;Sun Hee Hyun
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.74-80
    • /
    • 2023
  • Background: Although many studies have evaluated the efficacy and pharmacokinetics of Korean Red Ginseng (KRG) components (Rg1, Rb1, Rg3, Rd, etc.), few have examined the in vivo pharmacokinetics of the radiolabeled components. This study investigated the pharmacokinetics of ginsenosides and their metabolite compound K (CK), 20(s)-protopanaxadiol (PPD), and 20(s)-protopanaxatriol (PPT) using radioisotopes in rat oral administration. Methods: Sprague-Dawley rats were dosed orally once with 10 mg/kg of the tritium(3H) radiolabeled samples, and then the blood was collected from the tail vein after 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 24, 48, 96, and 168 h. Radioactivity in the organs, feces, urine, and carcass was determined using a liquid scintillation counter (LSC) and a bio-imaging analyzer system (BAS). Results and conclusion: After oral administration, as the 3H-labeled ginsenosides were converted to metabolites, Cmax and half-life increased, and Tmax decreased. Interestingly, Rb1 and CK showed similar values, and after a single oral administration of components, the cumulative excretion ratio of urine and feces was 88.9%-92.4%. Although most KRG components were excreted within 96-168 h of administration, small amounts of components were detected in almost all tissues and mainly distributed to the liver except for the digestive tract when observed through autoradiography. This study demonstrated that KRG components were distributed to various organs in the rats. Further studies could be conducted to prove the bioavailability and transmission of KRG components to confirm the mechanism of KRG efficacy.

Simultaneous Assay of $^{14}C$ and $^{3}H$ in Evaporator Bottom by Chemical Oxidation Method (화학적 산화 방법을 이용한 농축폐액 내 $^{14}C$$^{3}H$ 정략)

  • Ahn Hong-Joo;Lee Heung-Nae;Han Sun-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.193-200
    • /
    • 2005
  • [ $^{14}C$ ] and $^{3}H$ in the evaporator bottom (EB) discharged from the Nuclear power plant (NPP) were extracted simultaneously into a gaseous $^{14}CO_{2}$ and liquefied HTO by using the chemical oxidation, which is the method to oxidize samples completely using potassium persulfate and sulfuric acid. The extracted $^{14}C$ and $^{3}H$ were counted by the liquid scintillation counter (LSC) after the quench correction. To examine the recovery of $^{14}C$ using the radioactive standards, $Na_{2}^{14}CO_{3}$, $^{14}C-alcohol$, and $^{14}C-toluene$ as $^{14}C$, and HTO as $^{3}H$ were used. Also, the most suitable method for oxidizing $^{14}C-toluene$, which is difficult to be oxidized, was investigated through FT-IR spectra according to the concentration of sulfuric acid. With the identical method, $^{14}C$ and $^{3}H$ in the EB generated in the NPP were assayed in the range of $8.35{\sim}l.38{\times}10^3$ Bq/g and $2.46{\times}10^2{\sim}1.40{\times}10^4$ Bq/g, respectively.

  • PDF