• Title/Summary/Keyword: Liquid Salt

Search Result 352, Processing Time 0.028 seconds

PVDF/h-BN hybrid membranes and their application in desalination through AGMD

  • Moradi, Rasoul;Shariaty-Niassar, Mojtaba;Pourkhalili, Nazila;Mehrizadeh, Masoud;Niknafs, Hassan
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.221-231
    • /
    • 2018
  • A new procedure to produce poly(vinylidene fluoride)/boron nitride hybrid membrane is presented for application in membrane distillation (MD) process. The influence of hexagonal boron nitride (h-BN) incorporation on the performance of the polymeric membranes is studied through the present investigation. For this aim, h-BN nanopowders were successfully synthesized using the simple chemical vapor deposition (CVD) route and subsequent solvent treatments. The resulting h-BN nanosheets were blended with poly(vinylidene fluoride) (PVDF) solution. Then, the prepared composite solution was subjected to phase inversion process to obtain PVDF/h-BN hybrid membranes. Various examinations such as scanning electron microscopy (SEM), wettability, permeation flux, mechanical strength and liquid entry pressure (LEP) measurements are performed to evaluate the prepared membrane. Moreover, Air gap membrane distillation (AGMD) experiments were carried out to investigate the salt rejection performance and the durability of membranes. The results show that our hybrid PVDF/h-BN membrane presents higher water permeation flux (${\sim}18kg/m^2h$) compared to pristine PVDF membrane. In addition, the experimental data confirms that the prepared nanocomposite membrane is hydrophobic (water contact angle: ${\sim}103^{\circ}$), has a porous skin layer (>85%), as well competitive fouling resistance and operational durability. Furthermore, the total salt rejection efficiency was obtained for PVDF/h-BN membrane. The results prove that the novel PVDF/h-BN membrane can be easily synthesized and applied in MD process for salt rejection purposes.

Salt-water Processing-dependent Change in Anti-oxidative and Anti-inflammatory Effects of Cortex Eucommiae (염수초 포제법에 따른 두충의 항산화 및 항염증 활성 변화 비교연구)

  • Koh, Wonil;Lee, Jinho;Ha, In-Hyuk;Chung, Hwa-Jin;Lee, In-Hee;Lee, Jae-Woong;Kim, Eun Jee;Gang, Byeong-Gu;Jeon, Se Hwan;Cho, Yongkyu;Kim, Min-Jeong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.2
    • /
    • pp.29-38
    • /
    • 2017
  • Objectives The present study aimed to investigate the change in marker compounds, anti-oxidative and anti-inflammatory effects of salt-water processed Cortex Eucommiae. Methods To evaluate the influence of processing on anti-oxidant effect of Cortex Eucommiae, changes in total phenol, total flavonoid, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical scavenging, and ferric reducing antioxidant power (FRAP) between processed and raw Cortex Eucommiae were assessed. In addition, nitrite assay was conducted to determine the influence of processing on anti-inflammatory effect of Cortex Eucommiae. Cell viability was also examined as to elucidate whether processing affects cytotoxicity of Cortex Eucommiae. Finally, high-performance liquid chromatography (HPLC) analysis was conducted to monitor changes in pinoresinol diglucoside amount of processed and raw Cortex Eucommiae. Results Salt-water processed Cortex Eucommiae showed higher total phenol and flavonoid amount, compared to raw Cortex Eucommiae. Furthermore, anti-oxidative activity of processed Cortex Eucommiae was improved as discovered in DPPH, ABTS, and FRAP assays. Anti-inflammatory effect of Cortex Eucommiae was also enhanced following salt-water processing, as evidenced in nitrite assay. HPLC analysis found that the amount of pinoresinol diglucoside, widely known as the marker compound of Cortex Eucommiae, increases through salt-water processing. All experiments were performed with non-toxic concentration of Cortex Eucommiae; processing did not affect the cytotoxicity of Cortex Eucommiae up to the currently adopted concentration. Conclusions The present results support that salt-water processing of Cortex Eucommiae is beneficial in terms of marker compound amount, anti-oxidative, and anti-inflammatory activities. Additional investigations are needed to standardize the processing method of Cortex Eucommiae.

Stability of concentrated Colloidal Liquid Aphrons containing a quaternary ammonium salt in the continuous phase (사차 암모늄 염을 함유하는 농축된 콜로이드 액상 에이프런의 연속상에서의 안정성)

  • Hahm, Hyung Chul;Hong, Won Hi;Lee, Choul Ho
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.291-297
    • /
    • 2001
  • In this study, the stability of concentrated colloidal liquid aphrons (CLAs) containing Aliquat 336 was measured. CLAs in the continuous phase are stabilized by water-soluble surfactant and oil-soluble surfactant. To compare the stability of CLAs, half-life was introduced. According to the change of state of solution, the rate of break-up of concentrated CLAs changed rigorously at critical coagulation concentration. Critical coagulation concentration was measured with changing pH. The effects of ionic strength and concentration of Sodium Dodecyl Benzene Sulfonate (SDBS) on the stability of concentrated CLAs in the continuous phase were also investigated.

  • PDF

Extinguishment of Liquid Fuel Fire by Water Mist Containing Additives

  • Park, Jae-Man;Won, Jung-Il;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.24-29
    • /
    • 2005
  • An experimental study was presented for extinguishing characteristics of liquid fuel fire by water mist($Dv_{0.99}{\leq}200{\mu}m$) containing potassium acetate and sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing additives, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space. During the experiments, flame temperatures were measured, and concentrations of oxygen and carbon monoxide were analyzed by a combustion gas analyzer. The average evaporation rate of water droplet containing additives was lower than that of pure water at a given surface temperature and decreased with the concentration increase due to the precipitation of salt in the liquid-film and change of surface tension. In case of using additives, the fire extinguishing times was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium or sodium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4 MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

An ionic liquid incorporated gel polymer electrolyte for double layer capacitors

  • Perera, Kumudu S.;Prasadini, K.W.;Vidanapathirana, Kamal P.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.21-34
    • /
    • 2020
  • Energy storage devices have received a keen interest throughout the world due to high power consumption. A large number of research activities are being conducted on electrochemical double layer capacitors (EDLCs) because of their high power density and higher energy density. In the present study, an EDLC was fabricated using natural graphite based electrodes and ionic liquid (IL) based gel polymer electrolyte (GPE). The IL based GPE was prepared using the IL, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF) with the polymer poly(vinyl chloride) (PVC) and the salt magnesium trifluoromethanesulfonate (Mg(CF3SO3)2 - MgTF). GPE was characterized by electrochemical impedance spectroscopy (EIS), DC polarization test, linear sweep voltammetry (LSV) test and cyclic voltammetry (CV) test. The maximum room temperature conductivity of the sample was 1.64 × 10-4 Scm-1. The electrolyte was purely an ionic conductor and the anionic contribution was prominent. Fabricated EDLC was characterized by EIS, CV and galvanostatic charge discharge (GCD) tests. CV test of the EDLC exhibits a single electrode specific capacitance of 1.44 Fg-1 initially and GCD test gives 0.83 Fg-1 as initial single electrode specific discharge capacitance. Moreover, a good stability was observed for prolonged cycling and the device can be used for applications with further modifications.

Antioxidant Effect of Fermented Salicornia herbacea L. Liquid with EM (Effective Microorganism) on Pork (돼지고기에 대한 EM(Effective Microorganism) 함초 발효액의 항산화 효과)

  • Han Seung-Kwan
    • Food Science of Animal Resources
    • /
    • v.24 no.3
    • /
    • pp.298-302
    • /
    • 2004
  • The study was conducted to determine the antioxidant activity of EM (Effective Microorganism) fermented glasswort liquid for utilizing as a functional food material. Glasswort leaves by freezing-dried were showed the highest 20.19% contents, it was 20% salt contents of cooked salts. To compare antioxidant effects of glasswort plant parts (dried ground leaves, stems, and roots of glasswort) were exploited for investigation of antioxidant activity. Antioxidant activity for the samples was investigated by TBA (Thiobarbituric acid reactive method). EM fermented glasswort liquid from coastal region, the highest antioxidative activity showed in the oven-dried leaves at 14 days after storage. It was showed antioxidant effect more than 5.3 times than control. In conclusion, antioxidative effect of glasswort was apparently exhibited through measurement of TBARS (Thiobarbituric acid reactive substances).

Design and Gastrointestinal Permeation of Non-aqueous Biphenyl Dimethyl Dicarboxylate Oral Liquid Preparations (비페닐디메칠디카르복실레이트의 비수성 경구 액상제제의 설계 및 위장관 투과성)

  • Kim, Hye-Jin;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2000
  • In an attempt to develop a non-aqueous liquid formulation of practically insoluble biphenyl dimethyl dicarboxylate (DDB), dissolution and permeation studies were performed. Various non-aqueous DDB solutions were formulated and filled into empty hard capsules. Dissolution rates of a new formulation were compared with those of commercially available DDB preparations using one and eight dose units. Dissolution rates after 2 hr of DDB tablets (DDB 25 mg), hard capsules (DDB 7.5 mg) and soft capsules (DDB 7.5 mg) on market and new formulation (DDB 7.5 mg) were 6.3, 15.0, 84.5 and 98.0%, respectively. Higher doses (8 units) resulted in a supersaturation within one hr of dissolution, and dissolved amounts were reduced markedly. Due to the saturation and precipitation, a directly proportional dose-dissolution relationship was not observed. The addition of copolyvidone and/or glycyrrhizic acid ammonium salt to DDB solution in polyethylene glycol 300 and 400 inhibited the formation of precipitates during dissolution and markedly enhanced the rabbit duodenal permeation of DDB. From the site-specific gastrointestinal permeation studies, it was found that permeation rates of DDB after mixing of non-aqueous DDB solutions with aqueous buffered solutions were faster in the order of $rectal\;<\;colonic\;{\risingdotseq}\;ileal\;{\risingdotseq}\;duodenal\;<\;jejunal\;<\;gastric$.

  • PDF

Synthesis and Characteristics of Acrylol Borate as New Acrylic Gelator for Lithium Secondary Battery

  • Shin, Hyun-Min;Nguyen, Congtranh;Kim, Byeong-Yeol;Han, Myong-Hee;Kim, Ju-Sung;Kim, Jin-Hwan
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.134-138
    • /
    • 2008
  • A novel acrylol borate was designed and synthesized by reacting acrylate monomer and boric acid. The obtained acrylol borate was used as both gelator and anion receptor for the liquid electrolyte in a lithium secondary battery. It was found that the ionic conductivity of the gel polymer electrolyte (GPE) was as high as that of the liquid electrolyte, and the thermal stability of GPE was increased when only 2 wt% acrylol borate was incorporated into the liquid electrolyte. These results suggest that acrylol borate can be used as an effective additive to enhance the thermal stability of the electrolyte without adversely affecting its conductivity. It is believed that the strong complex formation between boron in the gelator and the anion of the salt is responsible for the enhanced thermal stability of the electrolyte solution and the increased ionic conductivity.

NUCLIDE SEPARATION MODELING THROUGH REVERSE OSMOSIS MEMBRANES IN RADIOACTIVE LIQUID WASTE

  • LEE, BYUNG-SIK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.859-866
    • /
    • 2015
  • The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

Cell Wall Micropore Loading of Pulp Fibers (펄프 섬유의 세포벽 미세공극 충전)

  • Lee, Jong-Man;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.57-64
    • /
    • 1992
  • The unique cell wall micropores of pulp fiber can be utilized as loading site in variety of important practical application which could be the basis of new papermaking technologies. One of these includes the manufature of paper containing higher levels of in situ filler precipitated. Hardwood pulp fiber were first impregnated with the solution of sodium carbonate($Na_2CO_3$). The micropores in cell wall of pulp fibers were filled with the liquid salt solution. The second calcium nitrate($Ca(NO_3)_2$) solution formed an insoluble calcium carbonate($CaCO_3$) precipitate within the cell wall micropores by interacting with the first sodium carbonate solution. The effects of chemical concentration and dryness of pulp fibers on the retention of cell wall micropore loaded filler were investigated. The paper properties of cell wall micropore loaded pulp fibers were compared with those of conventionally loaded and lumen loaded pulp fibers. Also the presense of the fillers within the cell wall micropore was observed by SEM. Increasing the chemical concentration to generate the calcium carbonate increased the retention of filler in cell wall micropore loaded pulp fibers. The particle size distribution of precipitated calcium carbonate ranged from $0.1{\mu}m$ to $80{\mu}m$. But, the average particle size of cell wall micropore loaded calcium carbonate was $4{\mu}m$. The paper made from never dried pulp fibers, the cell wall micropores which were filled with calcium carbonate, had better mechanical and optical properties than those of conventionally loaded or lumen loaded pulp fibers.

  • PDF