• Title/Summary/Keyword: Liquid Rocket Engine Combustion Chamber

Search Result 223, Processing Time 0.082 seconds

Development of High-Pressure Subscale Thrust Chamber for Verifying Core Technology for KSLV-II Performance Enhancement (한국형발사체 성능 고도화 핵심기술 검증을 위한 고압 축소형 연소기 개발)

  • Kim, Jonggyu;Kim, Seong-Ku;Joh, Miok;Ryu, Chulsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • In this study, a high-pressure subsacle thrust chamber was developed to verify the core technology for KSLV-II performance enhancement. The core technologies are the design of an injector for high-pressure combustion, development of a combustion stabilization device using the additive manufacturing technique, and the design and fabrication of mixing head and regeneratively cooled combustion chamber. The core technologies, which have been verified through the development of high-pressure subscale thrust chamber, will be used to develop large engine liquid rocket engine thrust chamber in the future.

Research and Development Status of Combustion Chamber of Liquid Rocket Engine for KSLV-II (한국형발사체 액체로켓엔진 연소기 연구 개발 현황)

  • Han, Yeoung-Min;Lee, Kwang-Jin;Kim, Jong-Gyu
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.291-294
    • /
    • 2012
  • The research and development status of combustion chamber of liquid rocjet engine for Korea Space Launch Vehicle(KSLV-II) are briefly described. The cold and hot firing tests of uni-element injector, the performance/heat flux measurement/hot firing tests of subscale combustion chamber and the performance/stability rating/regenerative cooling/hot fire tests of 30ton-class combustion chamber were successfully performed. Based on these results, the research and development of combustion chamber for 75ton-class liquid rocket engine are underway.

  • PDF

Analysis of Pintle Tip Thermal Damage in the Combustion Hot Firing Test with a 1.5-tonf Class Liquid-Liquid Pintle Injector (1.5톤급 액체-액체 핀틀 분사기 연소시험에서의 핀틀 팁 열손상 원인 분석)

  • Kang, Donghyuk;Hwang, Dokeun;Ryu, Chulsung;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Using kerosene and liquid oxygen, 1.5-tonf class liquid-liquid pintle injector with rectangular two-row orifice was designed and manufactured. The combustion test of the pintle injector was carried out to verify the combustion performance and combustion stability under a supercritical condition which is the actual operation condition of the liquid rocket engine. The combustion test result showed that the pintle tip was damaged by the high temperature combustion gas in the high-mixed ratio recirculation zone of the combustion chamber. To solve this problem, the insert nozzle was installed in the pintle injector to increase cooling performance at the pintle tip. As a result of the hot firing test, installation of the insert nozzle, AR and BF had a great effect on pintle tip cooling performance.

A Study on Cooling Characteristics of Combustion Gas by Liquid Nitrogen in a Liquid Rocket Engine (액체질소를 이용한 액체 로켓 엔진 연소 가스 냉각 특성 연구)

  • Jeon, Jun-Su;Lee, Yang-Suk;Song, Jae-Kang;Kim, Yoo;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.147-150
    • /
    • 2007
  • In this study, cooling characteristics of combustion gas were investigated by injecting liquid nitrogen into liquid rocket combustion chamber. A injection ring of liquid nitrogen was installed between a combustion chamber and a mixing chamber which was designed for mixing of combustion gas and nitrogen. At first, a ignition test of liquid rocket engine was conducted to verify a stable combustion process and 10 second combustion tests were successfully conducted. The results showed that combustion gas of LRE could be cooled by using liquid nitrogen.

  • PDF

Experience Cases of Combustion Instability in Development of Thrust Chamber for Liquid Rocket Engine (액체로켓엔진 연소기 개발에서의 연소불안정 경험 사례)

  • Kim, Jonggyu;Kim, Hyeon-Jun;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.54-58
    • /
    • 2017
  • A combustion instability has been one of the most serious problems in the development of combustion devices including rocket engine and gas turbine. In particular, a high-frequency combustion instability generated by resonant coupling between combustion phenomena and acoustic oscillations within thrust chamber causes severe damage to the hardware. Because it is accompanied by high amplitude pressure oscillations and excessive heat flux to the chamber wall. Therefore, combustion instability is one of the difficult problems that must be resolved in developing liquid rocket engine. This paper describes the cases of combustion instability encounted during the development of thrust chamber for KSR-III and KSLV-II.

  • PDF

Preliminary design on the thrust measurement system for vertical firing test stand of the liquid rocket engine combustion chamber (액체로켓엔진 연소기 수직형 연소시험설비의 추력측정시스템 기본설계)

  • Kim, Ji-Hoon;Kim, Seung-Han;Lee, Kwang-Jin;Han, Yeoung-Min;Park, Bong-Kyo;Hu, Sang-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.574-577
    • /
    • 2012
  • Thrust measuring is one of the crucial factor to decide the performance of a liquid rocket engine when the engine development test, especially for the combustion chamber, is implemented. Calculating the thrust from a combustion pressure is used when direct measuring the thrust is impossible, but direct measuring the thrust is necessary and various methods for doing it more precisely should be considered. This paper introduces the preliminary design concept about the new thrust measurement system for the vertical firing test stand, which is introduced domestically for the first time, of a liquid rocket engine combustion chamber.

  • PDF

Comparison of Effectiveness for Performance Tuning of Liquid Rocket Engine

  • Cho, Won Kook;Kim, Chun Il
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.16-22
    • /
    • 2018
  • An analysis has been made on the performance variation due to pressure drop change at propellant supply pipes of liquid rocket engine. The objective is to compare the effectiveness of control variables to tune the liquid rocket engine performance. The mode analysis program has been used to estimate the engine performance for different modes which is realized by controlling the flow rate of propellant. The oxidizer of combustion chamber, the fuel of combustion chamber, the oxidizer of gas generator and the fuel of gas generator are the independent variables to control engine thrust, engine mixture ratio and temperature of gas generator product gas. The analysis program is validated by comparing with the powerpack test results. The error range of compared variables is order of 4%. After comparison of tuning effectiveness it is turned out that the pressure drop at oxidizer pipe of gas generator and pressure drop at combustion chamber fuel pipe and the pressure drop at the fuel pipe of gas generator can effectively tune the thrust of engine, mixture ratio of engine and temperature of product gas from gas generator respectively.

Structural Analysis of Sinusoidal Vibration Load for Liquid Rocket Engine System (액체로켓엔진 시스템 정현파 진동 구조해석)

  • Chung, Yong-hyun;Lee, Eun-seok;Park, Soon-young;Yang, Chang-hwan;Jung, Jin-taeg
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.20-23
    • /
    • 2009
  • The structural analysis of liquid rocket engine was performed in the case of sinusoidal vibration load to verify structural safety. The finite element model is composed with main liquid rocket engine components, combustion chamber, turbopump, gas-generator, pyro-starter, main pipes, main valve, heat-exchanger, gimbal-mount and brackets. Natural vibration mode analysis and structural analysis for sinusoidal vibration load were performed. The natural mode frequency of liquid rocket engine is twice than that of launch vehicle. In the case of stress result of sinusoidal vibration load, the part of maximum stress has 1.4 margin, so the engine structure is safe for sinusoidal vibration load.

  • PDF

Basic Design of Combustion Chamber for 75 ton Liquid Rocket Engine (75톤급 액체로켓엔진 연소기 기본설계)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seong-Ku;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.125-129
    • /
    • 2009
  • The basic design of liquid rocket engine combustion chamber for a large space launch vehicle was described. It has vacuum thrust of 74.8 ton, vacuum specific impulse of 306.9 sec, chamber pressure of 60 bar, mass flow rate of 243.6 kg/s and combustion characteristic velocity of 1730 m/sec. The details of combustion performance and geometrical parameter were also given. The 75 ton combustion chamber consists of the combustor head with injector and the chamber/nozzle with regenerative cooling channels.

  • PDF

Effect of Thermal Barrier Coating and Film Cooling Condition on the Cooling Performance of Liquid-propellant Rocket Engine Combustor (액체로켓 엔진 연소기의 열차폐 코팅 및 막냉각 조건에 따른 냉각 성능 변화 해석)

  • Joh, Miok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.52-59
    • /
    • 2014
  • The effect of ceramic thermal barrier coating thickness on the cooling performance of a liquid-propellant rocket engine combustor has been investigated through combustion/cooling performance analysis whose results verified against measured data from hot-firing tests. Also have been confirmed the effects of film cooling amount near the face plate on the coolant temperature and on the thermal barrier coating surface temperature. Some important points to be considered for designing cooling schemes for regeneratively cooled rocket engine combustor have been drawn and reviewed from present study and further verification of the analysis tool should be performed in the future.