• Title/Summary/Keyword: Liquid Rocket Combustion Chamber

Search Result 268, Processing Time 0.019 seconds

Cooling Performance Analysis of Regeneratively Cooled Combustion Chamber (재생냉각 연소실의 냉각성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.67-72
    • /
    • 2004
  • A regenerative cooling system has been designed through empirical 1-D analysis for a liquid rocket engine of 30-ton-level thrust. The hot-gas-side wall temperature from 1-D analysis shows 100K difference compared to 3D CFD analysis. Two variations of design with same cooling performance are suggested for different maximum channel widths i.e., 4mm and 2mm. The coolant pressure drop of the latter design is higher by 20%. The maximum liner temperature is about 700K when TBC and the thermal resistance of carbon deposit are considered. So film cooling is recommended to increase the cooling capacity as the present cooling capacity is insufficient

The computational characteristics of thrust and propellant mixture ratio regulators for LRE using a propellant combination of methane and oxygen

  • 주대성;남궁혁준;조용호;김경호;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.18-18
    • /
    • 2002
  • A project where the TPUs(Turbo Pump Units) for 10tf-thrust oxygen/methane LRE (Liquid Rocket Engine) are under development is being implemented to include an experimental combustion chamber developed. In the process of it, we introduced the power-balanced engine cycles in order to substantiate concepts of the engine using the combinations of the propellants. Accordingly, the main engine parameters of nominal operating mode are resulted from the 1-Dcalculations and it is found that the regulators are needed for controlling the expected pressure levels in the characteristics of propellant mixture ratio and thrust supposing the regulator is set to analogue-typed one which is easy to develop.The technical requirements like the nominal flow rate, its deviations expected and the pressure difference In need helped the several main characteristics of regulators to be determine in this stage. Here, a dozen of deviation values in the main parameters related to engineoperation are taken into independent consideration and accepted to the results for additional regimes of the regulators.Finally, we can determine the scheme and the primary dimensions along with the calculation design of the spring acceptable for general configuration which can definitely forwarded to the autonomous tests of the aggregates, The obtained data in further will be used for successive refinement of operating mode of the engine.

  • PDF

Surface Gas Temperature of Turbine Blade by Hot Gas Stream of Pyro Starter in Operation Condition (파이로 시동기의 고온 가스에 의한 터빈 블레이드의 표면 가스온도 발달과정 해석)

  • Lee, In-Chul;Kim, Jin-Hong;Koo, Ja-Ye;Lee, Sang-Do;Kim, Kui-Soon;Moon, In-Sang;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.63-67
    • /
    • 2007
  • The high pressure turbopump carries out supplying the oxidizer in the liquid propulsion rocket in the combustion chamber. Because an LRE requires a very short starting time , the turbine at the turbopump experiences high torque that was produced by the high pressure and the high temperature. The purpose of this study is to evaluate a turbine blade surface temperature profiles at initial starting 0 ${\sim}$ 0.5 sec. Using $Fine^{Tm}$/turbo, three dimensional Baldwin-Lomax turbulence models are used for numerically analysis. The turbine is composed of 108 blades total, but only 7 rotors were considered because of periodic symmetry effect. Because of interaction with a bow shock on the suction surface, the boundary layer separates from suction surface at inner area of turbine blade. The averaged temperature of the turbine blade tip at 1000 rpm is higher than that of 9000 rpm. Especially at 1000 ${\sim}$ 9000 rpm, temperatures increases on the hub side of the turbine blade tip. Moreover at 9000 rpm, the temperatures from the hub to the shroud of the blade tip increase as well.

  • PDF

Turbopump+Gas generator Open-loop coupled test (터보펌프+가스발생기 개회로 연계시험)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.125-128
    • /
    • 2008
  • As a interstage of the 30tonf level LOx/kerosene liquid rocket engine development, turbopump-gas generator open-loop coupled tests are performed. Test schematic and test results of open-loop coupled tests are presented. In engine system operation environment simulating combustion chamber by flow control orifice, chill-down procedure, startup characteristics, nominal operability of turbopump+gas generator open-loop coupled Test Plant are confirmed The results of open-loop coupled test were used for the preparation on turbopump+gas generator closed-loop test.

  • PDF

Turbopump+Gas generator Closed-loop coupled test (터보펌프+가스발생기 폐회로 연계시험)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.129-132
    • /
    • 2008
  • For the development of the 30tonf level LOx/kerosene liquid rocket engine, turbopump-gas generator closed-loop coupled tests are performed. To simulate engine operation conditions, combustion chamber was substituted by flow control orifices. In simulated engine system operation environment, chill-down procedure, startup characteristics, nominal operability of turbopump+gas generator coupled Test Plant are confirmed. Turbopump and gas generator are confirmed to operate well in simulated engine environment. The control system for regulating power and mixture ratio of Test Plant are also successfully confirmed.

  • PDF

An Experimental Study on Pressure Loss in Straight Cooling Channels (직선형 냉각채널에서의 압력손실에 대한 실험적 연구)

  • Yoon, Wonjae;Ahn, Kyubok;Kim, Hongjip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • A regeneratively-cooled channel in a liquid rocket engine is used to effectively cool a combustion chamber inner wall from hot combustion gas, and the heat transfer/pressure loss characteristics should be predicted in advance to design cooling channels. In the present research, five cooling channels with different geometric dimensions were designed and the channels were respectively manufactured using cutter and endmill. By changing coolant velocity and downstream pressure, the effects of manufacturing method, channel shape, and flow condition on pressure losses were experimentally investigated and the results were compared with the analytical results. At same channel shape and flow condition, the pressure loss in the channel machined by the cutter was lower than that by the endmill. It was also found that the pressure loss ratio between the experimental result and the analytical data changed with the channel shape and flow condition.

On the Force Balance of a Main Oxidizer Shutoff Valve (산화제 개폐밸브의 힘평형에 관한 연구)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.14-17
    • /
    • 2008
  • A poppet type shutoff valve under the pneumatic control has been adapted for the MOV (Main Oxidizer shutoff Valve) for KSLV (Korea Space Launch Vehicle). The MOV controls the supply of liquid oxygen into the combustion chamber just by opening and shutting operations. The poppet part of the poppet valves is usually connected with the piston, but on the other hand that of the MOV is separated and just contacted with the piston in order to secure the flexibility of the valve design. For the prevention of the collision with valve body by an undesirable movement of the piston part, it is necessary to evaluate the force during the valve closing. The analysis of the force balance of the MOV at the moment of the valve closing have been performed and some important design parameters for the force balance control have been introduced.

  • PDF

Effects of Impellers and Floating Ring Seals on Performance of Centrifugal Pumps (임펠러 및 플로팅 링 실이 원심 펌프의 성능에 미치는 영향)

  • Kim, Dae-Jin;Choi, Chang-Ho;Hong, Soon-Sam;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1083-1088
    • /
    • 2011
  • The effects of an impeller and floating ring seals on the performance of centrifugal pumps are investigated on the basis of their test results using water. The pumps are single-staged centrifugal pumps developed for 30-ton- and 75-ton-class liquid rocket engines, and are components of a turbopump that supplies propellants (liquid oxidizer and kerosene) to the combustion chamber. The exit width of the impellers and the numbers and exit angles of the impeller blades are found to have influences on the pump heads. In addition, the pumps have different efficiencies according to the gaps between the floating ring seals and the impellers, whereas the pump size seems to have less effect on the efficiency.