• Title/Summary/Keyword: Liquid Rocket(액체로켓)

Search Result 825, Processing Time 0.02 seconds

Cavitating Flow in an Impinging-type Injector (충돌형 분사기 내의 캐비테이션 유동)

  • Jo, Won Guk;Ryu, Cheol Seong;Lee, Dae Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.80-86
    • /
    • 2003
  • An anaysis on the discharge performance of an impinging-type injector for cavitating flow has been conducted by both numerical and experimental method. The predicted discharge coefficient for cavitating flow agrees well with the measured data showing less than 1% discrepancy. For the case of non-cavitating flow analysis, the disagreement between CFD results and the experimental data is 8%. The discharge coefficient for the cavitating flow decreases with decrease in the Reynolds number. On the other hand, it increases slightly as the Reynolds number increases for the non-cavitating flow because of the reduced viscous effect. From the present study, it is confirmed that the fact that cavitation phenomena should be included to predict accurately the discharge performance of injectors for cavitating flow regime. The uniformity of density and velocity magnitude degraded at the injector exit, and the secondary flow strength through the injector orifice accentuated due to cavitation.

Geometric Effects on Damping Characteristics of Acoustic Cavity for the Control of Combustion Instabilities (연소불안정 제어를 위한 음향공의 감쇠에 대한 형상 효과)

  • 차정필;고영성;고영성
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.59-66
    • /
    • 2006
  • Acoustic cavity as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified in atmospheric temperature. First, harmful resonant frequency in a modeling chamber can be damped effectively by the installation of properly-tuned acoustic cavity. Besides, geometric effects of acoustic cavity on damping characteristics are analyzed and compared quantitatively. Satisfactory agreements have been achieved with linear acoustic analysis and experimental approach. Results show that the acoustic cavity of the largest orifice area or the shortest orifice length was the most effective in acoustic damping of the harmful resonant frequency. Finally, it is proved that an optimal design process is indispensable for the effective control of combustion instabilities.

Acoustic Damping Swirl Injector for Reduction of Combustion Instability (연소불안정 저감을 위한 음향학적 감쇠기능성 스월 인젝터)

  • Kim, Hyun-Sung;Kim, Byung-Sun;Kim, Dong-Jun;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.7-12
    • /
    • 2007
  • Swirl injector with multi-stage tangential entry was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and it's damping capacity is verified in atmospheric temperature. It has a finite mode of vibration and natural frequencies which can be tuned to the natural frequencies of a model combustion chamber. When the targeted injector for each modes is located at anti-node point, the amplitude of modes was decreased. And when the injector of large diameter is mounted, the split of mode which accompanies the decrease of amplitude appeared. From the experimental data, it is proved that if the location of injector mounted is located at an anti-node position of the targeted modes with proper volume, the amplitude of modes is decreased and the split of modes occurs at anti-node point.

  • PDF

Characteristics of Liquid Rocket Engine Simulation System Using Control Valve (제어밸브를 이용한 액체로켓엔진 모사시스뎀 특성)

  • Lee Joons-Youp;Jung Tae-Kyu;Han Sang-Yeop;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.74-84
    • /
    • 2005
  • This paper include the investigation of finding the system characteristics of facility by simulating open-type turbo-pump fed system, which has commercial control valves, using AMESIM (Advanced Modeling Environment Simulation) commercial software. After developing a flight-type control valve on the basis of the results, the system characteristics of facility for control and valve tests is estimated. Especially, one of purposes of this paper is to find PID value of each commercial control valve in the facility for system test. To find suitable control logic, PI and PID modes are also compared. This paper also introduces design parameters of valve and equipment for thrust control and TDS simulation, which are using control valves.

Effects of Injector Recess and Combustion Chamber Length on Combustion Stability of Swirl Coaxial Injectors (동축 와류형 분사기의 연소안정성에 대한 분사기 리세스 및 연소실 길이의 영향)

  • Bak, Sujin;Hwang, Donghyun;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.24-33
    • /
    • 2020
  • In this study, model combustion tests were conducted to investigate the combustion instability characteristics of swirl coaxial injectors for a liquid rocket engine. To examine the effects of the combustion chamber resonant frequency and the injector mixing conditions, pressure fluctuations in the combustion chamber were measured by changing the combustion chamber length, injector recess length, and propellant mixture ratio. From the test results, the variation in the pressure fluctuations for each experimental condition was confirmed and the combustion stability was evaluated by stability mapping. It was found that the longitudinal mode and Kelvin-Helmholtz instabilities occurred due to the change in the combustion chamber and recess lengths.

An Experimental Study on Pressure Loss in Straight Cooling Channels (직선형 냉각채널에서의 압력손실에 대한 실험적 연구)

  • Yoon, Wonjae;Ahn, Kyubok;Kim, Hongjip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • A regeneratively-cooled channel in a liquid rocket engine is used to effectively cool a combustion chamber inner wall from hot combustion gas, and the heat transfer/pressure loss characteristics should be predicted in advance to design cooling channels. In the present research, five cooling channels with different geometric dimensions were designed and the channels were respectively manufactured using cutter and endmill. By changing coolant velocity and downstream pressure, the effects of manufacturing method, channel shape, and flow condition on pressure losses were experimentally investigated and the results were compared with the analytical results. At same channel shape and flow condition, the pressure loss in the channel machined by the cutter was lower than that by the endmill. It was also found that the pressure loss ratio between the experimental result and the analytical data changed with the channel shape and flow condition.

Thermo-structural Analysis for Radiation-Cooled Nozzle Extension of Thrust Chamber (복사냉각방식 연소기 노즐확장부 열/구조해석)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.291-295
    • /
    • 2011
  • Thermo-structural analysis was performed for a radiation-cooled nozzle extension of thrust chamber. A Niobium alloy that is known to be a high-performance refractory alloy was used. Since area ratio of the nozzle extension is larger than that of nozzle divergence part, its size also becomes larger. For this reason, it is important to minimize the thickness of nozzle extension to reduce its weight. For the purpose of weight minimization, the thickness of nozzle extension was varied from 1.0 mm to 0.4 mm and structural stability was evaluated for each case. Analysis results showed that nozzle extension with thickness of 0.4 mm is structurally stable for the operation condition. The effect of combustion-included vibration will be additionally considered in the future.

  • PDF

Design and Fabrication of Thrust Chamber for Injector verification of 7 tonf-class Thrust Chamber (7톤급 연소기용 분사기 검증을 위한 연소기 설계 및 제작)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.457-460
    • /
    • 2012
  • Design and fabrication of a sub-scale thrust chamber for verification of 7 tonf-class thrust chamber injectors were described in this paper. The 7 tonf-class thrust chamber consists of mixing head with 90 coaxial swirl injectors and regeneratively combustion chamber cooled by kerosene. The coaxial swirl injectors with different pressure drop and recess number were designed for 7 tonf full-scale thrust chamber. By applying the designed injectors to the sub-scale thrust chamber before applying them to the full-scale thrust chamber, the injector performance and functioning were verified. The sub-scale thrust chamber consists of 19 injectors, has chamber pressure of 70 bar, total propellant mass flow rate of 4.3 kg/s, mixture ratio(O/F) of 2.45.

  • PDF

A Study on Fuel Selection for Next-Generation Launch Vehicles (차세대 발사체용 연료선정에 관한 연구)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.62-80
    • /
    • 2021
  • The requirements for the next-generation propulsion system and for a good propellant have been summarized. The characteristics and effectiveness of kerosene, hydrogen, and methane, which are the fuels that are mainly attracting attention in Korea and abroad, were compared with each other. As a result of the comparison, methane was evaluated to be more advantageous than other fuels in reliability, cost, reusability, maintenance, eco-friendliness, safety, lifespan, technical difficulties, engine cycle selection, application of common bulkhead, and non-disassembly/reassembly delivery. And in terms of performance, the specific impulse of methane is higher than that of kerosene, so the efficiency of the launch vehicle can be increased. Methane's properties incluidng eco-friendliness, low-temperature combustion, long life, and maintenability make it beneficial for reuse and for the development of multi-purpose engines.

Combustion Characteristics of the Gaseous-methane & Gaseous-oxygen Reactants under Highly Fuel-rich Conditions (연료과농 조건에서의 기체메탄-기체산소 반응물의 연소특성)

  • Kang, Yun Hyeong;Ahn, Hyun Jong;Bae, Chang Han;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.45-52
    • /
    • 2021
  • A hot-firing test was conducted using gaseous-methane and gaseous-oxygen under highly fuel-rich condition as a prior study for the development of a liquid propellant small rocket engine. To compare combustion characteristics for various equivalence ratios, the oxygen flow rate was set to 12 g/s and the methane flow rate was changed according to the equivalence ratio. As a result, it was observed that the steady-state characteristic velocity obtained during the hot-firing test steeply rose in the latter part of each test: the difference between the former and the latter steady value was enhanced overall in proportion to the equivalence ratio. Based on this, the equivalence ratio range depending on the variational characteristics of the characteristic velocity could be divided into three combustion regimes.