• 제목/요약/키워드: Liquid Length

검색결과 883건 처리시간 0.022초

디젤분무의 분열길이 측정에 관한 연구 (A Study on the Measurement of Break-up Length for the Diesel Sprays)

  • 장세호;라진홍
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.22-28
    • /
    • 1999
  • The injected liquid does not break-up instantly after injection for diesel engine. There is some unbroken portion, which is the liquid core(The length of liquid core is called the break-up length) in the spray. If the liquid core is longer than the depth of the bowl in the small DI diesel engine, the liquid core impinges on the surface of the piston. Once the liquid core impinges on the surface, it cannot ignite or burn rapidly and thus prolongs burning time with a degradation in thermal efficiency. The break-up length of a diesel spray in a compressure vessel was measured by an electric resistance method, A voltage was applied between the nozzle and screen, bar, needle electrode inserted at various axial and radial positions into atomizing sprays. As a result, a current flows not only in the region of liquid core but also through the droplets of the spray. It is found that the break-up length measured with screen electrode is overestimated. The break-up length of the spray is found to be proportional to the square root of the density ratio of fuel and surrounding gas. The break-up length of the spray decreases as the injection pressure and the back pressure increase.

  • PDF

2유체 분무노즐의 분열특성(I)-액주분열 및 내부유동- (Breakup Characteristics in Plain Jet Air Blast Atomizer(I)-Jet Breakup and Internal Flow-)

  • 김혁주;이충원
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.1009-1023
    • /
    • 1997
  • The breakup length of a liquid jet with flowrate, formed by releasing through a nozzle of circular cross-section into the atmosphere, was experimented and studied for 3 liquid nozzles of varying diameters. The experimental result was analyzed using the existing theoretical equation for predicting the breakup length. It was found that the breakup length of liquid jet depends on the velocity, and the breakup length increases with increasing of the liquid nozzle diameter. Also, the variation range of the breakup length for the same flowrate of liquid increased rapidly as velocity was increased for laminar flow, but in the turbulent flow region, it leveled off in the range of approximately 0.55-0.7 of the mean breakup length. Furthermore, when the longest smooth liquid jet was applied to the co-axial flow air blast atomizer, the effect of air flow on the flow pattern and breakup length was studied for 6 glass nozzles of different lengths and diameters. It was found that depending on the diameter of the mixing tube and liquid jet, it was possible to observe a wide range of flow patterns, such as liquid jet through flow, partial annular flow and annular flow. The liquid jet breakup length was more sensitive to the change in the length rather than the diameter of the mixing tube. As the length of the mixing tube shortens, the breakup length also shortens rapidly.

BREAKUP LENGTH OF CONICAL EMULSION SHEET DISCHARGED BY PRESSURE-SWIRL ATOMIZER

  • Rhim, Jung-Hyun;No, Soo-Young
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.103-107
    • /
    • 2001
  • Many researches on pressure-swirl injectors due to the variety of application have been conducted on the effects of nozzle design, operating conditions, properties of liquid and ambient conditions on the flow and spray characteristics. The breakup length of conical emulsified fuel sheet resulting from pressure-swirl atomizer using in the oil burner was investigated with the digital image processing method with neat light oil and emulsion with water content of lotto% and the surfactant content of 1-3%. The injection pressure ranged from 0.1 to 1.2 MPa was selected. The various regimes for the stage of spray development within the experimental conditions selected in this study is newly suggested in terms of Ohnesorge number and injection pressure. The breakup length for both criteria show the same tendency even though the random nature of perforation and disintegration process of liquid sheet. The stage of spray development is widely different with the physical properties of liquid atomized, mainly viscosity of liquid. The breakup length decreases smoothly with increase in the injection pressure for the lower viscous liquid.

  • PDF

平滑流의 分裂길이에 미치는 同軸氣流의 영향 (The influence of co-axial air flow on the breakup length of a smooth liquid jet)

  • 김덕줄;이충원
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1390-1398
    • /
    • 1988
  • 본 연구에서는 액주가 가장 긴 평활류 조건하에서 여기에 동축수직하방으로 공기를 흘렸을 경우, 액주분열에 영향을 미친다고 생각되는 제 인자 즉, 액체유속, 공 기유속, 액체노즐과 공기 오리피스 직경의 비, 노즐의 형상, 기액 접촉개시 위치등을 변화시켜 분열과정 및 분열기구를 규명하고, 이류체 분사노즐의 설계기준을 제공하는 것을 그 목적으로 한다.

정지공기중 점성유체 분류의 분열길이 측정 (Measurement of Breakup Length of Viscous Liquid Jet in Stagnant Air)

  • 임정현;류근영;임성빈;노수영
    • 한국분무공학회지
    • /
    • 제3권4호
    • /
    • pp.1-7
    • /
    • 1998
  • The measurement of breakup length of viscous liquid jet in stagnant air was conducted by a 3CCD digital video camera. The nozzle diameters of 4, 6, 8mm with L/d=50 were selected and the dynamic viscosity of viscous liquid made of glycerine and water was in the range of $1.061\times10^{-6}m^2/s$ to $4.935\times10^{-5}m^2/s$. The critical velocity is decreased and the breakup length is increased with the increase of nozzle diameter at the same dynamic viscosity of liquid. At the same nozzle diameter, the breakup length and the critical velocity are both increased with the increase of dynamic viscosity of liquid. It is found in the theoretical analysis that the initial disturbance level is the main cause of occurrance of critical Reynolds number in the stability curve. The comparison of experimental critical Reynolds number and the empirical correlation by Tanasawa and Toyota reveals the relatively good agreement.

  • PDF

분사각 변화에 따른 횡단류에 분사되는 액체제트의 분무특성에 대한 수치적 연구 (Numerical Study for Spray Characteristics of Liquid Jet in Cross Flow with Variation of Injection Angle)

  • 이관형;고정빈;구자예
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.161-169
    • /
    • 2006
  • The spray characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which was modified to be suitable for simulating liquid jet ejected into cross flow. Wave model and Kelvin-Helmholtz(KH)/Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Numerical results were compared with experimental data in order to verify the reliability of the physical model. Liquid jet penetration length, volume flux, droplet velocity profile and SMD were obtained. Penetration length increases as flow velocity decreases and injection velocity increases. From the bottom wall, the SMD increases as vertical distance increases. Also the SMD decreases as injection angle increases.

아음속 횡단류로 분사되는 이상유동 제트의 분무특성 (Spray Characteristics of Two-Phase Flow Jets into a Subsonic Crossflow)

  • 이근석;이원구;윤영빈;안규복
    • 한국분무공학회지
    • /
    • 제24권1호
    • /
    • pp.27-34
    • /
    • 2019
  • An experimental study on the spray characteristics of aerated-liquid jets discharged from effervescent injectors to a subsonic crossflow was conducted to investigate effects of a gas to liquid mass ratio (GLR) and a ratio of the orifice length to the diameter (L/d). The present effervescent injectors consist of a plain orifice injector and an aerator. To analyze breakup length and spray trajectory, instantaneous spray images were taken by a high speed camera. As the GLR increased, the spray penetration became higher under the same liquid mass flow rate and the breakup length became shorter due to the bubble expansion or the annular liquid film breakup. To predict the spray trajectory of two-phase flow jets into the crossflow, the homogeneous and the separated flow models were compared.

Chain Length Dependence of Confined Liquid Crystals Configuration

  • Finotello, Daniele;Jin, Tao
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.256-259
    • /
    • 2003
  • The study of confined liquid crystals flourished in the decade of the nineties. Liquid crystals properties have been probed after confinement in well-defined or interconnected geometries as those available in porous media and in polymer networks. In this work we emphasized the power of the nuclear magnetic resonance technique to determine the confined liquid crystal structures. We also present unexpected results on the dependence of the confined liquid crystal configuration on the chain length.

  • PDF

Chain Length Dependence of Confined Liquid Crystals Configuration

  • Finotello, Daniele;Jin, Tao
    • Journal of Information Display
    • /
    • 제4권1호
    • /
    • pp.14-16
    • /
    • 2003
  • The study of confined liquid crystals flourished in the decade of the nineties. Liquid crystals properties have been probed after confinement in well-defined or interconnected geometries as those available in porous media and in polymer networks. In this work we emphasized the power of the nuclear magnetic resonance technique to determine the confined liquid crystal structures. We also present unexpected results on the dependence of the confined liquid crystal configuration on the chain length.

Empirical Correlations for Breakup Length of Liquid Jet in Uniform Cross Flow-A Review

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.35-43
    • /
    • 2013
  • The empirical correlations for the prediction of breakup length of liquid jet in uniform cross flow are reviewed and classified in this study. The breakup length of liquid jets in cross flow was normally discussed in terms of the distances from the nozzle exit to the column breakup location in the x and y directions, called as column fracture distance and column fracture height, respectively. The empirical correlations for the prediction of column fracture distance can be classified as constant form, momentum flux ratio form, Weber number form and other parameter form, respectively. In addition, the empirical correlations for the prediction of column fracture height can be grouped as momentum flux ratio form, Weber number form and other parameter form, respectively. It can be summarized that the breakup length of liquid jet in a cross flow is a basically function of the liquid to air momentum flux ratio. However, Weber number, liquid-to-air viscosity ratio and density ratio, Reynolds number or Ohnesorge number were incorporated in the empirical correlations depending on the investigators. It is clear that there exist the remarkable discrepancies of predicted values by the existing correlations even though many correlations have the same functional form. The possible reasons for discrepancies can be summarized as the different experimental conditions including jet operating condition and nozzle geometry, measurement and image processing techniques introduced in the experiment, difficulties in defining the breakup location etc. The evaluation of the existing empirical correlations for the prediction of breakup length of liquid jet in a uniform cross flow is required.