• Title/Summary/Keyword: Liquid Jet Device

Search Result 12, Processing Time 0.021 seconds

A Study on the Drop Formation of the Liquid Jet Device for Rapid Prototyping (신속 시작법용 액적 생성 장치에서의 액적 생성에 대한 연구)

  • Lee, U-Il;Kim, Seon-Min;Park, Jong-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1021-1029
    • /
    • 2001
  • Rapid prototyping(RP) is a novel technology to create 3D products directly from CAD system. This study proposes a new RP method which uses the PZT ceramic plate to make a Drop-On-Demand liquid jet from the nozzle. The characteristic of drop formation in the new system is investigated both numerically and experimentally. The optimal drop for 3-D Printing can be obtained by the proper amplitude and frequency of the applied voltage. Also the process of the drop formation is analyzed using the pressure wave theory and verified by numerical simulation. First, the pressure wave generated by the deformation of the Piezo-plate at the nozzle is analyzed by solving the 2D axisymmetric wave equation via Finite Element Method. Finally, the drop formation process is simulated using a commercial software, FLOW 3D considering the pressure at the nozzle obtained by solving the wave equation as the boundary condition.

Micro-Gravity Research on the Atomization Mechanism of Near-Critical Mixing Surface Jet

  • Tsukiji, Hiroyuki;Umemura, Akira;Hisida, Manabu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.774-778
    • /
    • 2004
  • The atomization process of a circular $SF_{6}$ liquid jet issued into an otherwise quiescent, high-pressure $N_2$ gas was observed to explore the breakup mechanism of liquid ligaments involved in turbulent atomization. Both liquid and gas temperatures were fixed at a room temperature but the gas pressure was elevated to more than twice the critical pressure of $SF_{6}$. Therefore, the liquid surface was in a thermodynamic state close to a critical mixing condition with suppressed vaporization. Since the surface tension and the surface gas density approach zero and the surface liquid density, respectively, phenomena equivalent to those which would appear when a very high speed laminar flow of water were injected into the atmospheric-pressure air can be observed by issuing $SF_{6}$ liquid at low speeds in micro-gravity environment which avoid disturbances due to gravity forces. The instability ob near-critical mixing surface jet was quantitatively characterized using a newly developed device, which could issue a very small amount of $SF_{6}$ liquid at small constant velocity into a very high-pressure $N_2$ gas.

  • PDF

Experiment Study on the Spray Characteristics according to the Design Factors and SMD Measuring Direction of Y-jet Nozzle (Y-jet 노즐의 설계인자와 SMD 측정방향에 따른 분무특성의 실험 연구)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.205-211
    • /
    • 2018
  • Y-jet nozzle has various advantages over other twin-fluid nozzles and are used in industrial boilers. However, it costs large energy consumption because of assisted air and its design is complex. The Y-jet nozzle is consisted of a liquid and gas port and a mixing chamber. The diameter of the port and the length of the mixing chamber greatly affect spray and atomization characteristics, therefore, they are the most important factors in nozzle design. In this study, The experimental setup is consisted of a laboratory scale spray system. The characteristics of the Y-jet nozzle according to the design parameters were observed. As a result, it was found that the length of the mixing chamber did not have effect on the flow rate and the choking condition. The droplet size was measured using a Malvern type measuring device. In addition, measurements were conducted in the front and the right directions of the nozzles. Based on the results, the SMD View Ratio is defined. It is the asymmetrical design characteristics of the Y-jet nozzle.

Novel Ramjet Propulsion System using Liquid Bipropellant Rocket for Launch Stage

  • Park, Geun-Hong;Kwon, Se-Jin;Lim, Ha-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.506-510
    • /
    • 2008
  • Ramjets are capable of much higher specific impulse than liquid rocket engines for high speed flight in the atmosphere. Ramjets, however, cannot generate thrust at low flight speed. Therefore, an additional propulsion device to accelerate the ramjet vehicle to a supersonic speed is required. In this study, we propose a novel ramjet propulsion system with a $H_2O_2$/Kerosene rocket as the accelerator for initial stage. In order to test the feasibility of this concept, consecutive reactors was built; one for the decomposition of $H_2O_2$ and the other for kerosene combustion. Decomposed $H_2O_2$ jet was injected to combustor through converging nozzle from gas generator and over this hot oxygen jet, kerosene was injected by spay injector. Through the various test cases, hypergolic ignition test was carried out and steady combustion was achieved.

  • PDF

Electrostatic Spray Deposition Technique for Thin Film Fabrication

  • Choe, Gyeong-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.2.1-2.1
    • /
    • 2011
  • Electrospray deposition (ESD) technique is fast finding its applicability in the field of thin film device manufacturing processes and the ease and cost efficiency attached to ESD process with possible integration with batch manufacturing technologies is the potential future of thin film device manufacturing. As the name suggests, the deposition phenomenon should solely be a spray achieved through electrostatic forces. In fact it is an imbalance between the surface forces arising because of the surface tension of the liquid to be sprayed and Maxwell stresses which are induced because of the electric field, that pull the liquid downwards from the capillary into a stable jet which further disintegrates into smaller droplets because of coulomb forces and hence a cloud of charged, mono-dispersed and extremely diminutive (sometimes up to femtolitres) droplets is achieved. The present talk is going to be exclusively about the electrospray process concepts, generation and possible applications.

  • PDF

A Study on the Flow Characteristics of Circular and Swirl Jets (원형 및 스월제트의 유동특성에 관한 연구)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2014
  • The comparison of the flow characteristics between circular and swirl jets which were controlled by the spinner attachment inside the airtube were conducted in this study. Swirl jet means a flow in whirls by mixing the flow of axial and tangential direction. Swirl flow has been used for the improvement of the combustion efficiency in the combustor. This flow is controlled by the spinner which has several vanes inclined by certain angles to the axial direction. In this study, angle of vane $30^{\circ}$ and diameter ratio of outlet to inlet of the airtube 0.73 were made. These spec. should find on the general gun type burner built in the domestic small size boiler. As the flow characteristics, axial and tangential velocities were measured by using the 2-D hot-wire velocimeter system and analyzed statistically. And also this research conducted a practical experiment considering to the attached belongings likes as ignitor, nozzle etc. on the airtube of the gun type burner. As a result, swirl occurred at the occasion of beingness and flow region extended considerably toward the radial direction. But effect of swirl did not transmit to the downstream. And the complicated flow was appeared regardless of the existence of spinner because of the effect of belongings.

Study on Probabilistic Analysis for Fire·Explosion Accidents of LPG Vaporizer with Jet Fire (Jet Fire를 수반한 국내외 LPG 기화기의 화재·폭발사고에 관한 확률론적 분석에 관한 연구)

  • Ko, Jae-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.31-41
    • /
    • 2012
  • This study collected 5,100 cases of gas accident occurred in Korea for 14 years from 1995 to 2008, established Database and based on it, analyzed them by detailed forms and reasons. As the result of analyzing the whole city gas accidents with Poisson analysis, the item of "Careless work-Explosion-Pipeline' showed the highest rate of accidents for the next 5 years. And, "Joint Losening and corrosion-Release-Pipeline" showed the lowest rate of accident. In addition, for the result of analyzing only accidents related to LPG vaporizer, "LPG-Vaporizer-Fire" showed the highest rate of accident and "LPG-Vaporizer-Products Faults" showed the lowest rate of accident. Also, as the result of comparing and analyzing foreign LPG accident accompanied by Jet fire, facility's defect which is liquid outflow cut-off device and heat exchanger's defect were analyzed as the main reason causing jet fire, like the case of Korea, but the number of accidents for the next 5 years was the highest in "LPG-Mechanical-Jet fire" and "LPG-Mechanical-Vapor Cloud" showed the highest rate of accidents. By grafting Poisson distribution theory onto gas accident expecting program of the future, it's expected to suggest consistent standard and be used as the scale which can be used in actual field.

Effects of Liquid Pig Manuare Application Method on the Chemical Properties of Paddy Soil and Growth of Paddy Rice (돈분액비 시용법이 논토양의 이화학적 특성과 벼 생육 및 수확량에 미치는 영향)

  • Ahn, Chang Hyun;Kim, Woo Sik;Park, Jee Sung;Ahn, In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1043-1048
    • /
    • 2012
  • We have researched the changes of paddy soil properties and rice yield by several different methods to treated with liquid pig manure(LPM). In the execution of this experiment, rice was cultivated to full maturity at a paddy field in Jeollabuk-do in 2011. Field experiment was designed with surface application on dry field condition+jet hose spray(Tr. 1), surface application on dry field condition+incorporation with irrigation water(Tr. 2), surface application on dry field condition+application device of fertilizer through irrigation(Tr. 3), submerged application on irrigated field condition+jet hose spray(Tr. 4), submerged application on irrigated field condition+incorporation with irrigation water(Tr. 5) and submerged application on irrigated field condition+application device of fertilizer through irrigation(Tr. 6) plot. Total N, P, K contents in used LPM were 0.44%, 0.07% and 0.14%, respectively. After the experiment, soil properties were not significant difference both several treated plots. But $NO_3$ and $NH_4$ contents at incorporation with irrigation water plots in paddy soil were higher than other plots. The yield was 602 kg $10a^{-1}$ in Tr. 2 plot compared Tr. 6 plot, which showed a value of 9.6% higher.

Experimental Study on the Spray Characteristics of Aerated Impinging Jets (기체주입 충돌제트의 분무특성에 관한 실험적 연구)

  • Lee, Keunseok;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Development and Performance Tests of the Waste Water Diffusers using Acoustic Resonance and Oscillatory Pulsation (음향공진과 맥진동 현상을 이용한 폐수처리용 산기관 개발 및 성능시험)

  • Hong, Suk-Yoon;Moon, Jong-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.52-58
    • /
    • 1996
  • Using the acoustic resonances and oscillatory pulsations considered as the branch of wave technologies, the concept of the acoustic resonance diffusers for waste water treatment which maximize the oxygen transfer efficiency in gas-liquid two phase medium have been proposed, and studies for the principles and performance tests were accomplished. Besides, the design concepts for the low pressure Helmholtz resonator, cylinder and annular type reflection resonator and combined type resonance system have been implemented. The acoustic resonance energy which can speed up the mass transfer process increase the oxygen transfer efficiency, and periodic pulsations generated from the instability of air jet from nozzle make very small air bubbles. Then, the annular type jet resonator(AJR) applying these two principles successfully was evalulated as the most promising device and also the efficiency showing $20{\sim}30%$ better than conventional diffusers has been verified experimentally.

  • PDF