• Title/Summary/Keyword: Liquid Helium

Search Result 166, Processing Time 0.03 seconds

Current Status of Liquid-Free Superconducting System Develo (액체를 사용하지 않는 초전도시스템의 개발 동향)

  • 장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.1-6
    • /
    • 1999
  • The recent progress in the new cooling technology for superconducting systems without liquid cryogens is briefly presented. In these conduction-cooled systems, the super-conducting magnets are cooled by a direct contact with closed-cycle cryocoolers and only electricity is supplied to maintain the cryogenic temperatures. It is reported that at least 20 conduction-cooled (low Tc or high Tc) super- conducting systems have been constructed, tested, or commercially used worldwide. Some of the significant design issues are discussed in comparison with the conventional liquid-helium cooled systems.

  • PDF

Study on the Cooling Mechanism in a Cryogenic Cooling System (극저온 냉각 챔버 내 냉각 메커니즘 연구)

  • SEONGWOO LEE;YOUNGSANG NA;YOUNGKYUN KIM;SEUNGMIN JEON;JUNHO LEE;SUNGWOONG CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.146-151
    • /
    • 2024
  • The demand for research on materials with excellent cryogenic strength and ductility has been increasing, particularly for applications such as liquid hydrogen (20 K) storage tanks. To effectively utilize liquid hydrogen, a system capable of maintaining and operating at 20 K is essential. Therefore, preliminary research and verification of the cooling system are crucial. In this study, a heat transfer analysis was conducted on a cooling system to meet the cryogenic environment requirements for cryogenic hydrogen chamber, which are conducted at liquid helium temperatures (4 K). The cooling mechanism in a helium cooling system was examined using numerical analysis. The numerical cooling trends were compared with experimentally obtained cooling results. The good agreement between numerical and experimental results suggests that the numerical approach developed in this study is applicable over a wide range of cryogenic systems.

Study on the Temperature Characteristic of Pressurization System Using Cryogenic Helium Gas (극저온 헬륨가스 가압시스템에 대한 온도특성 연구(I))

  • Chung Yonggahp;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • The pressurization system in a liquid rocket propulsion system provides a controlled gas pressure in the ullage space of the vehicle propellant tanks. It is advantage to employ a hot gas heat exchanger in the pressurization system to increase the specific volume of the pressurant and thereby reduce over-all system weight. A significant improvement in pressurization-system performance can be achieved, particularly in a cryogenic system, where the gas supply is stored inside the cryogenic propellant tank. In this study liquid nitrogen was used instead of liquid oxygen as a simulant. The temperature characteristic of cryogenic pressurant is very important to develop some components in pressurization system. Numerical modeling and test data were studied using SINDA/FLUINT Program and PTF(Propellant-feeding Test facility).

Development Test of Pyro-Valve for Cryogenic Gaseous Helium in Pressurization System of Launch Vehicle (발사체 가압시스템용 극저온 헬륨가스 파이로밸브 개발시험)

  • Chung, Yong-Gahp;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.293-297
    • /
    • 2009
  • Valves, which are used to supply or block the flow of cryogenic pressurant in the pressurization system of liquid-propellant propulsion system in a launch vehicle, are pneumo-actuated valve, solenoid valve, pyro-valve, etc. Both pneumo-actuated valve and solenoid valve have more complex structure and are heavier than pyro-valve. For this study, a couple of pyro-valves, which are applicable to cryogenic and high-pressure fluid (cryogenic gaseous helium), have a simple structure, and are comparably light, are designed, manufactured, and tested (proof-pressure/leakage tests, performance test, vibration test, helium supply tests).

  • PDF

The maintenance record of the KSTAR helium refrigeration system

  • Moon, K.M.;Joo, J.J.;Kim, N.W.;Chang, Y.B.;Park, D.S.;Kwag, S.W.;Song, N.H.;Lee, H.J.;Lee, Y.J.;Park, Y.M.;Yang, H.L.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.6-9
    • /
    • 2013
  • Korea Superconducting Tokamak Advanced Research (KSTAR) has a helium refrigeration system (HRS) with the cooling capacity of 9 kW at 4.5 K. Main cold components are composed of 300 tons of superconducting (SC) magnets, main cryostat thermal shields, and SC current feeder system. The HRS comprises six gas storage tanks, a liquid nitrogen tank, the room temperature compression sector, the cold box (C/B), the 1st stage helium distribution box (DB#1), the PLC base local control system interconnected to central control tower and so on. Between HRS and cold components, there's another distribution box (DB#2) nearby the KSTAR device. The entire KSTAR device was constructed in 2007 and has been operated since 2008. This paper will present the maintenance result of the KSTAR HRS during the campaign and discuss the operation record and maintenance history of the KSTAR HRS.

Development and Test results of the Dielectric Evaluation System for a Helium Gas Cooled HTS Cable (헬륨가스 냉각 고온초전도 케이블의 절연특성 평가 시스템 개발 및 성능평가)

  • Kwag, Dong-Soon;Rodrigo, Horatio
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • The novel type of cable under consideration is cooled by gaseous Helium at elevated pressure. Helium is known for having poor electric breakdown strength; therefore the dielectric capabilities of this type of cable must be tested under conditions similar to the envisaged operation. In order to study the dielectric performance we have designed and built a novel high pressure cryostat rated at 2.17 MPa which has been used for testing model cables of lengths of up to 1 m. The cryostat is an open system where the gas is not re-circulated. This allows maintaining a high purity of the gas. The target temperature range is between 40 K and 70 K. This substantially increases the critical current density of the HTS compared to 77 K, which is the typical temperature of cables cooled by liquid nitrogen. The cryostat presented allows for adjusting the temperature and keeping it constant for the time necessary to run a complete dielectric characterization test. We give a detailed description of the cryostat. Measurements of partial discharge inception voltages as well as the temperature distribution along the model cables as a function of time are presented.

Commissioning results of the KSTAR helium refrigeration system (KSTAR 저온헬륨설비 시운전 결과)

  • Cho, K.W.;Chang, H.S.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, Y.S.;Bak, J.S.;Yang, S.H.;Fauve, E.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.64-68
    • /
    • 2009
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (HRS) with an exergetic equivalent cooling power of 9kW at 4.5K without liquid nitrogen $(LN_2)$ pre-cooling has been manufactured and installed for such purposes. In this proceeding, we will present the commissioning and initial operation results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

Thermal Analysis of Prelaunch Transients in Cryogenic Oxidizer Tank of Liquid Propulsion Rocket (발사대기 중인 액체추진 로켓의 극저온 산화제 탱크 내 비정상 열해석)

  • Kim, Kyoung-Hoon;Ko, Hyung-Jong;Kim, Kyoung-Jin;Cho, Kie-Joo;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 2008
  • The prelaunch thermal transients in the cryogenic oxidizer tank of liquid propulsion rocket subjected to uniform heat flux from outside are numerically analyzed through thermodynamic equations and heat and mass transfer relations. The prelaunch stage is assumed to be composed of five idealized sub-stages including pressurization process by helium gas injection. The Peng-Robinson equation of state is utilized in the lumped analysis of ullage gas. The liquid region is divided into a number of horizontal layers of uniform properties to account for the thermal stratification. The computational result for the typical case shows that the temperature rise of liquid oxidizer is less than 1K and the adsorbed helium into the liquid is approximately 10g.

Analysis of Liquid Oxygen Feeding System for Pump-Fed Liquid Propulsion Rocket

  • Cho, Nam-Kyung;Kwon, Oh-Sung;Cho, In-Hyun;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.211-215
    • /
    • 2004
  • For design of cryogenic propellant feeding system, one of the main requirements is to meet temperature requirement for satisfying turbo-pump NPSH requirement. In this paper improved method of estimating the thermal stratification in liquid oxygen tank is presented to help design. In the case of liquid rocket using turbo-pump, the inner pressure of liquid oxygen tank is maintained low, so vaporization of liquid oxygen is generally occurred. In this paper, inner process of LOX tank is analyzed by two phase flow modeling. The vaporization rate and required helium mass is investigated.

  • PDF

Research and Development of Superconducting Magnetic Energy Storage system(SMES)

  • Isojima, Shigeki
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.40-45
    • /
    • 1998
  • This paper describes a collaborative work between SEI and KEPCO on the Superconducting Magnetic Energy Storage system (SMES). We have studied two types of magnets. One is the 400kJ class LTS-SMES for testing the power stabilization operated at liquid helium temperature (4.2K) and the other is the 100J class HTS-SMES for confirming the possibility of applying HTS wire to SMES at liquid nitrogen temperature (77k). In this paper, the design of the magnet and the test results are described. Each magnet performed completely at rated operation.

  • PDF