• Title/Summary/Keyword: Liquid Height

Search Result 406, Processing Time 0.027 seconds

Effect of the limiting-device type on the dynamic responses of sliding isolation in a CRLSS

  • Cheng, Xuansheng;Jing, Wei;Li, Xinlei;Lu, Changde
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.133-144
    • /
    • 2018
  • To study the effectiveness of sliding isolation in a CRLSS (concrete rectangular liquid-storage structure) and develop a reasonable limiting-device method, dynamic responses of non-isolation, sliding isolation with spring limiting-devices and sliding isolation with steel bar limiting-devices are comparatively studied by shaking table test. The seismic response reduction advantage of sliding isolation for concrete liquid-storage structures is discussed, and the effect of the limiting-device type on system dynamic responses is analyzed. The results show that the dynamic responses of sliding isolation CRLSS with steel bar-limiting devices are significantly smaller than that of sliding isolation CRLSS with spring-limiting devices. The structure acceleration and liquid sloshing wave height are greatly influenced by spring-limiting devices. The acceleration of the structure in this case is close to or greater than that of a non-isolated structure. Liquid sloshing shows stronger nonlinear characteristics. On the other hand, sliding isolation with steel bar-limiting devices has a good control effect on the structural dynamic response and the liquid sloshing height simultaneously. Thus, a limiting device is an important factor affecting the seismic response reduction effect of sliding isolation. To take full advantage of sliding isolation in a concrete liquid-storage structure, a reasonable design of the limiting device is particularly important.

Dynamic response of a base-isolated CRLSS with baffle

  • Cheng, Xuansheng;Liu, Bo;Cao, Liangliang;Yu, Dongpo;Feng, Huan
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.411-421
    • /
    • 2018
  • Although a rubber isolation cushion can reduce the dynamic response of a structure itself, it has little influence on the height of a sloshing wave and even may induce magnification action. Vertical baffles are set into a base-isolated Concrete Rectangular Liquid Storage Structure (CRLSS), and baffles are opened as holes to increase the energy dissipation of the damping. Problems of liquid nonlinear motion caused by baffles are described using the Navier-Stokes equation, and the space model of CRLSS is established considering the Fluid-Solid Interaction (FSI) based on the Finite Element Method (FEM). The dynamic response of an isolated CRLSS with various baffles under an earthquake is analyzed, and the results are compared. The results show that when the baffle number is certain, the greater the number of holes in baffles, the worse the damping effects; when a single baffle with holes is set in juxtaposition and double baffles with holes are formed, although some of the dynamic response will slightly increase, the wallboard strain and the height of the sloshing wave evidently decrease. A configuration with fewer holes in the baffles and a greater number of baffles is more helpful to prevent the occurrence of two failure modes: wallboard leakage and excessive sloshing height.

Analysis of Slurry Composting and Biofiltration Liquid Fertilization on the Initial Growth of Chamaecyparis obtusa (SCB액비 처리가 편백의 초기생장에 미치는 효과 분석)

  • Sang Hyun, Lee;Kwang Soo, Lee;Su Young, Jung;Hyun Soo, Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.594-602
    • /
    • 2022
  • The study aim was to analyze the effects of slurry composting and biofiltration (SCB) liquid fertilization on the early growth of Chamaecyparis obtusa. Control, chemical fertilizer (CF), low liquid fertilizer (LLF), and high liquid fertilizer (HLF) sites with five trees per site were established, and each treatment was repeated three times. The growth analysis showed that HLF-200 (treated with HLF 200%) had the highest growth. To assess the fertilization effect, root-collar diameter and height growth models were developed for the HLF-200 and control groups. We found that the Schumacher anamorphic and Schumacher polymorphic equations were best suited for the root-collar diameter growth models in the control and HLF-200 groups, respectively. For the height growth models, the Gompertz polymorphic equation was the most appropriate. From the growth curve generated by the chosen model, the effect of fertilization on the amount and rate of the root-collar diameter and height growth were higher in the HLF-200 group than in the control group. Treatment with SCB liquid fertilization was judged to be suitable for the early growth stage of Chamaecyparis obtusa.

Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column

  • Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.315-320
    • /
    • 2015
  • Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient ($k_La$), interfacial area (a) and liquid side true mass transfer coefficient ($k_L$) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of $O_2$ and chemical absorption of $CO_2$ in the column. The values of $k_La$ and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of $k_L$ increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases.

Phenomena of Liquid Jet Breakup in High Speed Gas Stream (고속유동장내 액체분열현상)

  • Park, Y.K.;Seok, J.K.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.66-73
    • /
    • 1996
  • The present study investigates experimentally the characteristics of liquid jet, which is, the spray flow in the normal direction of the air stream under the flow conditions of air velocity $110\sim125m/s$. The present study adopts with the flow visualization technique using a short duration light bulb and the image processing analyse with CCD camera. Two types of injector were used: one is a flat plate type, and the other is backward facing step type, which height are 5, 8, 10mm. Dispersion of liquid jet can be represented by gray level of CCD camera. In the upstream of liquid jet, the backward facing step shows better liquid jet penetration. However, in the downstream. mean droplet size for backward facing step injector is smaller than that for flat plate injector

  • PDF

Evaporative Modeling in n Thin Film Region of Micro-Channel (마이크로 채널내 박막영역에서의 증발 모델링)

  • Park, Kyoung-Woo;Noh, Kwan-Joong;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • A mathematical model of the hydrodynamic and heat transfer performances of two-phase flow (gas-liquid) in thin film region of micro channel is proposed. For the formulation of modeling, the flow of the vapor phase and the shear stress at the liquid-vapor interface are considered. In this work, disjoining pressure and capillary force which drive the liquid flow at the liquid-vapor interface in thin film region are adopted also. Using the model, the effects of the variations of channel height and heat flux on the flow and heat transfer characteristics are investigated. Results show that the influence of variation of vapor pressure on the liquid film flow is not negligible. The heat flux in thin-film region is the most important operation factor of micro cooler system.

Dynamic Analysis of Base-Isolated Rectangular Liquid Storage Structures (기초격리된 직사각형 유체 저장 구조물의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.109-116
    • /
    • 2004
  • The dynamic behavior of the rectangular liquid storage structure is known to be greatly influenced by fluid-structure interaction. By mounting the liquid storage structure on the properly designed base isolators, dynamic response of the superstructure can be reduced. However, base isolators inevitably incur large displacement of the structure to the ground ·ind may give adverse effects on the sloshing height. This paper presents the analysis method for fluid-structure-isolator interaction in base-isolated rectangular liquid storage structures. In the method, the irrotational motion of invicid and incompressible ideal fluid is expressed by analytic solutions and the superstructure and isolators are properly modeled by finite element and bilinear model. Free surface sloshing motion, hydrodynamic pressure acting on the wall and structural response are obtained by the presented method.

Numerical modeling of defects nucleation in the liquid crystal devices with inhomogeneous surface (액정 디스플레이 소자 내에서의 불균일한 표면에 의한 결점의 발생과 모델링)

  • Lee Gi-dong;Kang Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1793-1798
    • /
    • 2005
  • We model the nucleation and motion of defects in the liquid crystal display device with inhomogeneous surface by using fast Q-tensor method, which can calculate scalar order parameter S and nucleation of the defect in the liquid crystal director field. In order to model the defect, homeotropic aligned liquid crystal cell with step inhomogeneous electrode which has a height of $1{\mu}m$ is used. From the simulation, we can observe the nucleation and line of the defect from surface inhomogeneity and the experiment is performed for confirmation.

Microcontroller-Based Liquid Level Control Modeling

  • Dumawipata, Teerasilapa;Unhavanich, Sumalee;Tangsrirat, Worapong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.82.3-82
    • /
    • 2001
  • This work presents a design technique for the implementation of the liquid level control system by based on the use of a single-chip microcontroller. The proposed model system offers the following attractive features : (1) application of the pressure transducer for sensing the height of liquid in tank (2) using the obtained liquid level for defining on-off condition of the water pump (3) the liquid values were controlled by using stepping motors for controlling of 57 points (4) can set up by using manual control or automatic control (5) can monitor and display the process status either on microcontroller-based control board or on the computer via RS232 serial-port. Experimental results have been employed to show the effectiveness ...

  • PDF

Effect of channel height on the heat transfer coefficient of a rotation dimpled channel (딤플이 설치된 회전 유로의 높이가 열전달 계수에 미치는 영향에 대한 실험적 연구)

  • Kim, Seok-Beom;Lee, Yong-Jin;Choi, Eun-Yeong;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.30-36
    • /
    • 2010
  • The detailed heat transfer coefficients on a rotating dimpled channel were measured by the hue detection based the transient liquid crystal technique. The dimples were fabricated on the one side of the channel and the tested channel aspect ratio was 4, 6, and 12 with fixed channel width. Tested Reynolds number based on the channel hydraulic diameter was varied from 21,000 to 47,000. A stationary case and two different rotating conditions were tested so that the dimple fabricated surface became leading or trailing surface. For all rotating conditions, the minimum averaged heat transfer coefficient was measured for the channel aspect ratio of 6. Generally, the highest averaged heat transfer coefficient was observed for the highest aspect ratio cases due to increased dimple induced vortex strength.