• 제목/요약/키워드: Liquid Electrolyte

검색결과 260건 처리시간 0.025초

금속염을 이용한 염료감응 태양전지의 고체전해질의 전기화학적 특성 (Electrochemical properties of metal salts polymer electrolyte for DSSC)

  • ;;구할본
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • Dye-sensitized solar cell(DSSC) have been considered one of the promising alternatives to conventional solar cells, because of their low cost, easy fabrication and relatively high energy conversion efficiency. However, although the cell offers reasonable efficiency at least 11%, the use of a liquid electrolyte placed technological challenges for achieving the desired durability and operational stability of the cell. In order to prevent or reduce electrolyte leakage considerable efforts have been made, such as p-type semiconductor or organic hole-transport material that better mechanical properties and simple fabrication processes. In this work, we synthesized solid-state electrolyte containing LiI and KI metal salt with starting materials of poly ethylene oxide to substitute liquid electrolyte enhance the ionic conductivity and solar conversion efficiency. Li+ leads to faster diffusion and higher efficiency and K+ leading to higher ionic conductivity. The efficiency of poly ethylene oxide/LiI system electrolyte is 1.47% and poly ethylene oxide/potassium electrolyte is 1.21%. An efficiency of 3.24% is achieved using solid-state electrolyte containing LiI and KI concentrations. The increased solar conversion efficiency is attributed to decreased crystallinity in the polymer that leads to enhanced charge transfer.

  • PDF

과불소화된 아크릴레이트 가교제로 제조된 직접 가교형 겔 고분자 전해질의 전기화학적 특성 (In-situ Cross-linked Gel Polymer Electrolyte Using Perfluorinated Acrylate as Cross-linker)

  • 오시진;심효진;김동욱;이명훈;이창진;강영구
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.145-152
    • /
    • 2010
  • 본 연구에서는 organophosphate를 기반으로 한 과불소화된 아크릴레이트 가교제를 사용하여 제조한겔 고분자 전해질의 이온 전도도 및 전기화학적 특성을 평가하였다. 과불소화된 아크릴레이트 가교제를 사용하여 만든 겔 고분자 전해질은 액체전해질의 함량이 최대 97 wt%까지 안정한 겔 상태를 유지하였다. 본 연구에서 제조한 겔 고분자 전해질의 이온전도도는 $30^{\circ}C$에서 $1.0\;{\times}\;10^{-2}\;S/cm$의 값을 가졌다. 또한 전기화학적 안정성 테스트에서도 약 4.5V로 이상까지 산화에 의한 열화가 없이 안정하였다. 합성된 겔고분자 전해질을 리튬이온 고분자 전지에 적용하여 그 활용성을 평가하였다. 양극으로는 $LiCoO_2$를 사용하였으며 음극으로는 카본을 사용하였다. 이렇게 만든 리튬이온 고분자 전지는 0.1C에서 136.11 mAh/g의 용량으로 이론용량과 거의 비슷한 값을 나타내었으며, 2C 방전에서도 초기 용량의 91%를 유지하였다. 또한 500번의 충방전 후에도 초기 용량의 70%정도의 용량을 유지하였다.

Quasi-Solid-State Polymer Electrolytes Based on a Polymeric Ionic Liquid with High Ionic Conductivity and Enhanced Stability

  • Jeon, Nawon;Jo, Sung-Geun;Kim, Sang-Hyung;Park, Myung-Soo;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.257-264
    • /
    • 2017
  • A polymeric ionic liquid, poly(1-methyl 3-(2-acryloyloxypropyl) imidazolium iodide) (PMAPII), was synthesized as a single-iodide-ion-conducting polymer and employed in a gel polymer electrolyte. Gel polymer electrolytes prepared from iodine, 4-tert-butylpyridine, ${\gamma}$-butyrolactone, and PMAPII were applied in quasi-solid-state dye-sensitized solar cells (DSSCs). The addition of 16 wt.% PMAPII provided the most favorable environment, striking a compromise between the iodide ion concentration and the ionic mobility, which resulted in the highest conversion efficiency of the resulting DSSCs. The quasi-solid-state DSSC assembled with the optimized gel polymer electrolyte exhibited a relatively high conversion efficiency of 7.67% under AM 1.5 illumination at $100mA\;cm^{-2}$ and better stability than that of the DSSC with a liquid electrolyte.

Cycling Performance and Surface Chemistry of Si-Cu Anode in Ionic Liquid Battery Electrolyte Diluted with Dimethyl Carbonate

  • Nguyen, Cao Cuong;Kim, Dong-Won;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.8-13
    • /
    • 2011
  • Interfacial compatibility between the Si-Cu electrode and diluted ionic liquid electrolyte containing 50 vol.% of 1M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide (MPP-TFSI) and 50 vol.% dimethyl carbonate (DMC) in a lithium cell and dilution effect on surface chemistry are examined. ex-situ ATR FTIR analysis results reveal that the surface of the Si-Cu electrode cycled in the diluted ionic liquid electrolyte is effectively passivated with the SEI layer mainly composed of carboxylate salts-containing polymeric compounds produced by the decomposition of DMC. Surface species by the decomposition of TFSI anion and MPP cation are found to be relatively in a very low concentration level. Passivation of electrode surface with the SEI species contributes to protect from further interfacial reactions and to preserve the electrode structure over 200 cycles, delivering discharge capacity of > 1670 $mAhg^{-1}$ and capacity retention of 88% of maximum discharge capacity.

Studies of Lithium Diffusivity of Silicon-Based Film Electrodes for Rechargeable Lithium Batteries

  • Nguyen, Cao Cuong;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권3호
    • /
    • pp.108-112
    • /
    • 2013
  • Lithium diffusivity of the silicon (Si)-based materials of Si-Cu and $SiO_x$ (x = 0.4, 0.85) with improved interfacial stability to electrolyte have been determined, using variable rate cyclic voltammetry with film model electrodes. Lithium diffusivity is found to depend on the intrinsic properties of anode material and electrolyte; the fraction of oxygen for $SiO_x$ (x = 0.4, 0.85), which is directly related to electrical conductivity, and the electrolyte type with different ionic conductivity and viscosity, carbonate-based liquid electrolyte or ionic liquid-based electrolyte, affect the lithium diffusivity.

A New Ionic Liquid for a Redox Electrolyte of Dye-Sensitized Solar Cells

  • Kang, Man-Gu;Ryu, Kwang-Sun;Chang, Soon-Ho;Park, Nam-Gyu
    • ETRI Journal
    • /
    • 제26권6호
    • /
    • pp.647-652
    • /
    • 2004
  • A new ionic liquid, 1-vinyl-3-heptylimidazolium iodide (VHpII), was synthesized and applied as a redox electrolyte for dye-sensitized solar cells. The chemical structure of the synthesized VHpII was confirmed using $^1H$ NMR. Thermogravimetric analysis showed that the VHpII was stable for thermal stress of up to $250^{\circ}C$. The energy conversion efficiencies of the VHpII-based dye-sensitized solar cells were investigated in terms of the effect of a lithium iodide addition. A solar cell containing the redox couple of VHpII and iodine showed a conversion efficiency of 2.63% under 1 sun light intensity at AM 1.5. Adding 0.4 M LiI results in a conversion efficiency of 3.63%, which was an improvement of about 40%. The increased conversion efficiency was ascribed to an increase in external quantum efficiency.

  • PDF

Study on the Cycling Performance of Li4Ti5O12 Electrode in the Ionic Liquid Electrolytes Containing an Additive

  • Kim, Jin-Hee;Song, Seung-Wan;Hoang, Hung-Van;Doh, Chil-Hoon;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.105-108
    • /
    • 2011
  • The cycling behavior of $Li_4Ti_5O_{12}$ electrode in the ionic liquid (IL)-based electrolytes containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and a small amount of additive (vinylene carbonate, ethylene carbonate, fluoroethylene carbonate) was investigated. The $Li_4Ti_5O_{12}$ electrode in the IL electrolyte with an additive exhibited reversible cycling behavior with good capacity retention. Electrochemical impedance spectroscopy and FTIR studies revealed that an electrochemically stable solid electrolyte interphase was formed on the $Li_4Ti_5O_{12}$ electrode in the presence of vinylene carbonate and ethylene carbonate during cycling.

공융 갈륨-인듐 액체금속 전극 기반 전기이중층 커패시터 (An Electric Double-Layer Capacitor Based on Eutectic Gallium-Indium Liquid Metal Electrodes)

  • 김지혜;구형준
    • 한국수소및신에너지학회논문집
    • /
    • 제29권6호
    • /
    • pp.627-634
    • /
    • 2018
  • Gallium-based liquid metal, e.g., eutectic gallium-indium (EGaIn), is highly attractive as an electrode material for flexible and stretchable devices. On the liquid metal, oxide layer is spontaneously formed, which has a wide band-gap, and therefore is electrically insulating. In this paper, we fabricate a capacitor based on eutectic gallium-indium (EGaIn) liquid metal and investigate its cyclic voltammetry (CV) behavior. The EGaIn capacitor is composed of two EGaIn electrodes and electrolyte. CV curves reveal that the EGaIn capacitor shows the behavior of electric double-layer capacitors (EDLC), where the oxide layers on the EGaIn electrodes serves as the dielectric layer of EDLC. The oxide thicker than the spontaneously-formed native oxide decreases the capacitance of the EGaIn capacitor, due to increased voltage loss across the oxide layer. The EGaIn capacitor without oxide layer exhibits unstable CV curves during the repeated cycles, where self-repair characteristic of the oxide was observed. Finally, the electrolyte concentration is optimized by comparing the CV curves at various electrolyte concentrations.

A study on the long-term stability of dye-sensitized solar cells with different electrolyte systems

  • 방소연;강태연;이도권;김경곤;고민재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.320-320
    • /
    • 2010
  • The dye-sensitized solar cells (DSSCs) have achieved so far the highest validated efficiency over 11%. However, the cells with the best performance utilize volatile solvent as a electrolyte, which can cause some practical limitations for the long-term operation. This is one of the most substantial problems to be resolved for the commercialization of DSSCs. In order to improve the long-term stability, many research groups have reported new electrolyte system, to replace the liquid type electrolyte by non-volatile ones. In this work, we studied long-term stability of the DSSCs with various types of electrolytes such as (PVDF HFP) based polymer, eutectic melts of ionic liquids, and liquid based solvent. The cells with various electrolytes have been exposed to the condition under thermal stress and illumination over 1000 hours. We will report the change of photovoltaic properties with time and investigate the degradation mechanism with the impedance spectroscopic analysis.

  • PDF

An ionic liquid incorporated gel polymer electrolyte for double layer capacitors

  • Perera, Kumudu S.;Prasadini, K.W.;Vidanapathirana, Kamal P.
    • Advances in Energy Research
    • /
    • 제7권1호
    • /
    • pp.21-34
    • /
    • 2020
  • Energy storage devices have received a keen interest throughout the world due to high power consumption. A large number of research activities are being conducted on electrochemical double layer capacitors (EDLCs) because of their high power density and higher energy density. In the present study, an EDLC was fabricated using natural graphite based electrodes and ionic liquid (IL) based gel polymer electrolyte (GPE). The IL based GPE was prepared using the IL, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF) with the polymer poly(vinyl chloride) (PVC) and the salt magnesium trifluoromethanesulfonate (Mg(CF3SO3)2 - MgTF). GPE was characterized by electrochemical impedance spectroscopy (EIS), DC polarization test, linear sweep voltammetry (LSV) test and cyclic voltammetry (CV) test. The maximum room temperature conductivity of the sample was 1.64 × 10-4 Scm-1. The electrolyte was purely an ionic conductor and the anionic contribution was prominent. Fabricated EDLC was characterized by EIS, CV and galvanostatic charge discharge (GCD) tests. CV test of the EDLC exhibits a single electrode specific capacitance of 1.44 Fg-1 initially and GCD test gives 0.83 Fg-1 as initial single electrode specific discharge capacitance. Moreover, a good stability was observed for prolonged cycling and the device can be used for applications with further modifications.