• Title/Summary/Keyword: Liquid Cooling System

Search Result 366, Processing Time 0.026 seconds

Vacuum Test of Cavity with Liquid Nitrogen

  • Choi, Suk;Park, Gunn-Tae;Kim, Heetae
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.132-135
    • /
    • 2015
  • Schematic of RAON vacuum system is introduced. Vacuum test for superconducting cavity with liquid nitrogen is performed. Schematic plan for RAON vacuum system is introduced and vacuum control system for superconducting cavity test is constructed. Vacuum pressure of cavity is shown as a function of pumping time. The temperature of cavity is shown as a function of cooling time. Outgassing species from cavity is also detected. Detailed experimental procedure is presented to test the cavity vacuum with liquid nitrogen.

Characteristic analysis and condenser design of gas helium circulation system for zero-boil-off storage tank

  • Jangdon Kim;Youngjun Choi;Keuntae Lee;Jiho Park;Dongmin Kim;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.65-69
    • /
    • 2023
  • Hydrogen is an eco-friendly energy source and is being actively researched in various fields around the world, including mobility and aerospace. In order to effectively utilize hydrogen energy, it should be used in a liquid state with high energy storage density, but when hydrogen is stored in a liquid state, BOG (boil-off gas) is generated due to the temperature difference with the atmosphere. This should be re-condensed when considering storage efficiency and economy. In particular, large-capacity liquid hydrogen storage tank is required a gaseous helium circulation cooling system that cools by circulating cryogenic refrigerant due to the increase in heat intrusion from external air as the heat transfer area increases and the wide distribution of the gas layer inside the tank. In order to effectively apply the system, thermo-hydraulic analysis through process analysis is required. In this study, the condenser design and system characteristics of a gaseous helium circulation cooling system for BOG recondensation of a liquefied hydrogen storage tank were compared.

A Study on Regenerative Cooling System for Thrust Chamber Protection (연소실 보호를 위한 재생냉각 방식 연구)

  • Park, Hee-Ho;Kim, Jung-Hun;Choi, Young-Hwan;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.78-85
    • /
    • 2005
  • The purpose of the study was to establish the design procedure and develop the program for designing regenerative cooling system. To obtain the design parameter necessary for the realization of regenerative cooling system, water-cooled regenerative cooling system was designed from suggested procedure. To compare experimental results with a present method of analytically predicting the heat transfer loads, $250kg_{f}$ experimental LRE with water-cooled regenerative cooling system was investigated. Based on the investigation, the good correction between the predicted and measured data was verified. Developed design program can be used to designing Kerosene- cooled regenerative cooling system. The basic experimental data and correlations obtained in this study for 250kgf experimental LRE with water-cooled regenerative cooling system can be directly applicable to the real LRE.

Experimental study on natural circulation using liquid nitrogen for superconducting applications

  • Choi, Yeon Suk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.49-52
    • /
    • 2013
  • An experiment to investigate the natural circulation of a cryogen has been performed. The study is motivated mainly by our recent development of cryogenic cooling system for prototype superconducting cyclotron without any circulating pump. In the natural circulation loop system, a cooling channel is attached on the outer surface of the aluminium block and the liquid nitrogen passes through inside of the channel to cool the block indirectly. A cryocooler as a heat sink is located at the top to re-condense cryogenic vapor coming from the aluminium block in which electrical heater is installed as a heat source. The main dimensions are determined using the relevant analysis and the natural circulation loop is successfully fabricated. The temperature distributions in the loop are measured during initial cool-down process and in steady state, from which the modified Grashof numbers are calculated and compared with the existing correlation estimated with one-dimensional analysis for steady state flow.

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling(II) (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (II))

  • Kim, Jung-Hun;Jeong, Hea-Seung;Park, Hee-Ho;Park, Kye-Seung;Kim, Yoo;Moon, Il-Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.53-56
    • /
    • 2003
  • This paper describes the general design procedure of cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, the proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that combustion pressure and mixture ratio have an influence on the heat flux to be produced in combustion chamber.

  • PDF

Numerical Investigation of Cooling Performance of Liquid-cooled Battery in Electric Vehicles (하이브리드/전기 자동차용 수냉식 배터리 셀의 냉각성능에 관한 수치 해석적 연구)

  • Kwon, Hwabhin;Park, Heesung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.403-408
    • /
    • 2016
  • Lithium-ion batteries are commonly employed in hybrid electric vehicles (HEVs), and achieving high energy density in the battery has been one of the most critical issues in the automotive industry. Because liquid cooling containing antifreeze is important in automotive batteries to enable cold starts, an effective geometric configuration for high-cooling performance should be carefully investigated. Battery cooling with antifreeze has also been considered to realize successful cold starts. In this article, we theoretically investigate a specific property of an antifreeze cooling battery system, and we perform numerical modeling to satisfy the required thermal specifications. Because a typical battery system in HEVs consists of multiple stacked battery cells, the cooling performance is determined mainly by the special properties of antifreeze in the coolant passage, which dissipates heat generated from the battery cells. We propose that the required cooling performance can be realized by performing numerical simulations of different geometric configurations for battery cooling. Furthermore, we perform a theoretical analysis as a design guideline to optimize the cooling performance with minimum power consumption by the cooling pump.

Effects of Mesh Size in a Flat Evaporator and Condenser Cooling Capacity on the Thermal Performance of a Capillary Pumped Loop

  • Boo, Joon-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • The thermal performance of a flat evaporator for capillary pumped loop (CPL) applications was investigated. Two to four layers of coarse wire screen wicks were placed onto the heated surface to provide irregular passages for vapor flow. The evaporator and condenser were separated by a distance of 1.2 m and connected by individual liquid and vapor lines. The wall material was copper and the working fluid was ethanol. The experimental facility utilized a combination of capillary and gravitational forces for liquid return, and distribution over the evaporator surface. The tubing used for vapor and liquid lines was 9.35 mm or less in diameter and heat was removed from the condenser by convection of air. A heat flux of up to $4.9{\times}10^4$ $W/m^2$ was applied to a flat evaporator having dimensions of 100 mm by 200 mm, 20 mm thick. The thermal resistance of the system as well as the temperature characteristics of the system was investigated as the evaporator heat flux and the condenser cooling capacity varied. The performance of the evaporator and effect of condenser cooling capacity were analyzed and discussed.

  • PDF

Performance characterization of liquid desiccant system with extended surface (확장표면을 적용한 액체식 제습시스템의 성능특성에 관한 연구)

  • Jang, Young-Soo;Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.639-644
    • /
    • 2009
  • This study presents the new idea of liquid desiccant system with extended surface to reduce the system size. The extended surface is inserted between vertical cooling/heating tubes to increase the mass transfer area, and the liquid desiccant flows through the tube wall and the extended surface. Mathematical models for heat and mass transfer between liquid desiccant and air stream at tube wall and extended surface are provided. Dimensionless design parameters governing heat and mass transfer phenomena around the tube and the extended surface are identifier, and dimensionless operating parameters depicting system operating condition including flow rate ratio between dehumidification/regeneration processes, and mass flow rate ratio between air stream and liquid desiccant are explained. The effects of the parameters on system performance are summarized.

  • PDF

An Experimental Study on Engine Cooling System Improvement (엔진 냉각 시스템 개선에 관한 실험적 연구)

  • Chon, M.S.;Hwang, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.77-82
    • /
    • 2004
  • This paper describes the improvement of engine cooling system. To improve engine cooling performance, the authors approached in two ways. One is to increase water pump performance, changing of impeller shape and lightening of material were carried out. The second one is cooling efficiency rise, which were investigated with head gasket coolant flow passage optimization with flow visualization technique. The test results show that water pump performance was increased effectively, reduction of pump drive torque, and increase of pump flow-rate and pressure rise. Gasket hole pattern optimization test results represent an optimized head coolant flow which stands cross flow from exhaust to intake port side and small vortex were removed.

  • PDF

An Experimental Study on the Performance Characteristics of Hot-gas and Liquid Bypass Heat Pump Systems for Capacity Modulation (고온가스 및 액체 바이패스 적용 용량가변 히트펌프의 성능특성에 관한 실험적 연구)

  • Ahn, Jae Hwan;Joo, Youngju;Yoon, Won Jae;Kang, Hoon;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.137-142
    • /
    • 2013
  • A small air-conditioner or chiller for a constant temperature bath normally uses a constant speed compressor. The constant speed compressor is relatively inexpensive, but it uses on/off control for capacity modulation. The on/off control has several disadvantages, specifically energy loss and large temperature fluctuation. Continuous operation with a bypass system can be an alternative to on/off control, for capacity modulation. In this study, a heat pump system having a hot-gas bypass and a liquid bypass was adopted. The performance of the bypass-type heat pump was measured, by varying the bypass valve opening. The differences of the COP between the hot-gas bypass and the liquid bypass, in the cooling and heating operations, were within 2% and 1%, respectively. The liquid bypass showed a wider range of capacity control in the cooling operation but the hot-gas bypass showed a wider range of capacity control in the heating operation.