• Title/Summary/Keyword: Liquid Cooling System

Search Result 368, Processing Time 0.022 seconds

Prediction of sacrificial material ablation rate by corium jet impingement (노심 용융물 제트 충돌에 의한 희생물질의 침식예측)

  • Suh, Jungsoo;Kim, Hangon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.21-26
    • /
    • 2014
  • EU-APR1400, the Korean nuclear reactor design for European market adopts a so-called core catcher for ex-vessel molten corium retention and cooling as a severe-accident mitigation system. Sacrificial material, which controls melt properties and modifies melt conditions favorable for corium cooling and retention, is usually employed to protect core catcher body from molten corium. Since molten corium can be ejected through a breach of a reactor pressure vessel and impinged on the sacrificial material with enhanced heat transfer at a severe accident, it is very important to predict ablation rate of sacrificial material due to corium jet impingement accurately for core catcher design. In this paper, sacrificial-material ablation model based on boundary layer theory is suggested and compared with the experimental results by KAERI.

A Study on the Simulation of LPG Refrigeration Cylcle Using Pure Propane Refrigerant (순수한 프로판 냉매를 사용한 액화석유가스 냉동사이클의 모사에 관한 연구)

  • Cho Jung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.38-42
    • /
    • 2006
  • In this study, a simulation technology for refrigeration cycle which can liquefy and store liquified petroleum gas (LPG) using pure propane as a refrigerant has been introduced. Cooling water as the second cooling medium was used for the liquefaction of propane. Peng-Robinson equation of state was used for the entire refrigeration cycle. A new alpha formulation proposed by Twu et al. was used for the more accurate prediction of vapor pressures of pure propane component and LPG constituents. API method for the accurate estimation of liquid densities of propane and LPG was used instead of using Peng-Robinson equation of state. PRO/II with PROVISION release 7.1, a general purpose chemical process simulator was used for the simulation of the overall refrigeration system. Through this work, we can successfully simulate the real propane refrigeration plant operating at domestic site.

  • PDF

A Numerical Study of the Effects of Heat Transfer and Fluid Flow on Tube Insertion Length in Computer-Cooling Radiators (컴퓨터 CPU 냉각용 방열기 튜브 삽입길이에 따른 열유동 해석)

  • Choi, Jin-Tae;Kwon, Oh-Kyung;Yun, Jae-Ho;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.145-152
    • /
    • 2011
  • The performance of flat-tube radiators with louvered fins was numerically investigated for different tube insertion lengths. The results of numerical analysis using CFX-11 were compared with experimental results. In this study, three types of flat-tube radiators with louvered fins were considered. An experiment was conducted to validate the numerical results. Flow rate ratio (FR) and Stotal were introduced to understand the uniformity of flow distribution easily. The results of numerical analysis revealed that the heat transfer rate and pressure drop increased as the mass flow rate increased. Further, the results showed that the heat transfer rate of sample 3 with h/D = 0.5 was higher than that of the other samples. The pressure drop increased as the insertion length toward the header part increased, and the pressure drop in the case of sample 3 appeared to be the highest. The factor Stotal showed that the uniformity of the flow distribution in the case of sample 1 with h/D = 0 was higher than that in the case of the other samples.

Verification of SPACE Code with MSGTR-PAFS Accident Experiment (증기발생기 전열관 다중파단-피동보조급수냉각계통 사고 실험 기반 안전해석코드 SPACE 검증)

  • Nam, Kyung Ho;Kim, Tae Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.84-91
    • /
    • 2020
  • The Korean nuclear industry developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code and this code adpots two-phase flows, two-fluid, three-field models which are comprised of gas, continuous liquid and droplet fields and has a capability to simulate three-dimensional model. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for accident management plan of nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification work for separate and integral effect experiments is required. In this reason, the goal of this work is to verify calculation capability of SPACE code for multiple failure accident. For this purpose, it was selected the experiment which was conducted to simulate a Multiple Steam Generator Tube Rupture(MSGTR) accident with Passive Auxiliary Feedwater System(PAFS) operation by Korea Atomic Energy Research Institute (KAERI) and focused that the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The MSGR accident has a unique feature of the penetration of the barrier between the Reactor Coolant System (RCS) and the secondary system resulting from multiple failure of steam generator U-tubes. The PAFS is one of the advanced safety features with passive cooling system to replace a conventional active auxiliary feedwater system. This system is passively capable of condensing steam generated in steam generator and feeding the condensed water to the steam generator by gravity. As the results of overall system transient response using SPACE code showed similar trends with the experimental results such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it could be concluded that the SPACE code has sufficient capability to simulate a MSGTR accident.

Casting Layout Design Using CAE Simulation : Automotive Part(Oil Pan_BR2E) (CAE을 이용한 주조방안설계 : 자동차용 부품(오일팬_BR2E))

  • Kwon, Hong-kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • A most important progress in civilization was the introduction of mass production. One of main methods for mass production is die-casting molds. Due to the high velocity of the liquid metal, aluminum die-casting is so complex where flow momentum is critical matter in the mold filling process. Actually in complex parts, it is almost impossible to calculate the exact mold filling performance with using experimental knowledge. To manufacture the lightweight automobile bodies, aluminum die-castings play a definitive role in the automotive part industry. Due to this condition in the design procedure, the simulation is becoming more important. Simulation can make a casting system optimal and also elevate the casting quality with less experiment. The most advantage of using simulation programs is the time and cost saving of the casting layout design. For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_BR2E, Computer Aided Engineering (CAE) simulation was performed with three layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with three models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflows. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.

Casting Layout Design Using Flow & Solidification Analysis-Automotive Part(Oil Pan_BJ3E) (유동 및 응고해석을 이용한 주조방안설계-자동차용 부품(오일팬_BJ3E))

  • Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE). Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011 (설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Paik, Yong-Kyoo;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

Heat Sink Measurement of Liquid Fuel for High Speed Aircraft Cooling (고속 비행체 냉각을 위해 사용되는 액체연료의 흡열량 측정연구)

  • Kim, Joongyeon;Park, Sun Hee;Hyeon, Dong Hun;Chun, Byung-Hee;Kim, Sung Hyun;Jeong, Byung-Hun;Han, Jeong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.10-15
    • /
    • 2014
  • For hypersonic aircraft, increase of flight speeds causes heat loads that are from aerodynamic heat and engine heat. The heat loads could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which are able to absorb the heat loads by undergoing endothermic reactions, such as thermal and catalytic cracking. In this study, methylcyclohexane was selected as a model endothermic fuel and experiments on endothermic properties were implemented. To improve heat of endothermic reaction, we applied zeolites and confirmed that HZSM-5 was the best catalyst for the catalytic performance. The objective is to investigate catalytic effects for heat sink improvement. The catalyst could be applied to system that use kerosene fuel as endothermic fuel.

The Isoflurane Concentration of Precision Vaporizer Goldman Vaporizer According to Room Temperature and Carrier Gas Flow Rate (온도 및 유량에 따른 흡입 마취제 전용 기화기와 Goldman 기화기의 isoflurane 농도 변화)

  • 김성미;장화석;이정선;최치봉;임희란;최준철;김휘율
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.270-275
    • /
    • 2004
  • Anesthetic machines may be equipped with either a precision or nonprecision vaporizer. A precision vaporizer is designed to deliver an exact concentration of anesthetic agent. Goldman vaporizer is a low-flow, closed-circle circuit with a low resistance vaporizer, in circuit. Vaporizers used within circle system(VIC) are not usually temperature compensated and this is generally thought to be a disadvantage. As the volatile agent is vaporized, heat is extracted from the liquid and temperature decreases. This cooling of the liquid leads to a decrease in concentration of the anaesthetic agent delivered by the vaporizer. The purpose of this study is to examine the mechanical consistency of the delivery of isoflurane from Goldman vaporizer and precision vaporizer at various gas flow rates and temperatures. And we first studied isoflurane concentration according to room temperature changes delivered by a Goldman vaporizer and precision vaporizer using different gas flow. The room temperature of $15^{\circ}C,$ $20^{\circ}C,$ $28^{\circ}C$ and fresh gas flow rates of 0.5, 1.0, 1.5, 2.0, 3.0 l/min were used. The inspired agent concentration was measured using a Datex-Ohmeda multigas analyzer. As rose in room temperature, the isoflurane concentration of precision vaporizer approximated the dial setting. On the other hand, at a dial setting concentration of 5.0 percent the delivered isoflurane concentration of precision vaporizer was more than the dial setting in high temperature. The isoflurane concentration of precision vaporizer remained constant despite the increase in temperature. The isoflurane concentration of Goldman vaporizer was increased with rise in room temperature and decreased with rise in gas flow.