• Title/Summary/Keyword: Liquid Atomization

Search Result 949, Processing Time 0.027 seconds

Development of the Organic Solar Cell Technology using Printed Electronics (인쇄전자 기술을 이용한 유기 태양전지 기술 개발)

  • Kim, Jungsu;Yu, Jongsu;Yoon, Sungman;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active compo-nents in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT(Thin Film Transistor), which are printed withfunctional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manu-facturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and active layer which consist of the P3HT:PCBM. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

  • PDF

Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel (바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향)

  • Ryu, Kyunghyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.

A study on Behavior of Turbulent Transient Jets with Butane and Propane (Butane 및 propane의 비정상 난류 제트 특성에 관한 연구)

  • Lee, Beom-Ho;Song, Hak-Hyun;Cho, Seung-Hwan;Hong, Sung-Tae;Lee, Dae-Yup;Lee, Tae-Woo
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.74-82
    • /
    • 2010
  • In order to understand the behavior of transient gaseous injection used in an LPG (Liquefied Petroleum Gas) engine, turbulent incompressible transient jets with butane and propane were measured and analyzed at pressures of 1.5 bar and 2.0 bar with injector diameters of 3 mm and 5 mm. Mie-scattering method with a tracer was used, and images were processed to investigate the behavior of butane and propane jets. Distances from the nozzle to transition region were measured as $L_e/d_{inj}$=4.35~19.4, where $L_e$ and $d_{inj}$ indicate respectively a distance from nozzle to transition point and nozzle diameter. Slits and tubes around jet at near-field were introduced to measure the effect of entrainment and the diameter of jet, which revealed that the entrainment of surrounding air is significant for developing jet diameter. When the entrainment is restricted, the behavior of jet became deviating from the baseline. It was found that the virtual origin located outside of a nozzle towards jet tip within the conditions of this work, and its location was estimated as $x_o/d_{inj}$=0.56~7.25, where $x_o$ is a distance from nozzle to virtual origin.

Comparison on Exhaust Gas of Heavy Duty Diesel Trucks; THC and CO Emission Affected by NOx Control Devices (EGR, SCR) (대형 경유트럭의 NOx 저감장치에 따른 배출가스 특성비교)

  • Mun, SunHee;Yoo, Heung-Min;Son, JiHwan;Yun, Changwan;Park, Gyu Tae;Kim, JeongSoo;Lee, Jongtae
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.149-155
    • /
    • 2015
  • With increasing of GDP, the registration number of passenger cars has exceeded 20 million last year in Korea. Especially, the registration number of the diesel engine vehicles has been increasing. However, the WHO(World Health Organization) IARC (International Agency for Research on Cancer) has reported that diesel engine exhaust gas is an one of HAPs, which has carcinogenic for human, and they have designated it to Group 1. To solve this problem, exhaust gas from diesel engines has to be controlled. Thus, it has been controlling by European regulatory standard in Korea. On the other hand, in order to meet the enhanced emission regulations, all manufacturing company applied $NO_x$ control device to vehicles such as EGR (Exhaust Gas Recirculation), SCR (Selective Catalytic Reduction) and so on. However, these devices (EGR, SCR) were operated by difference reaction mechanism respectively, and the composition of exhaust gas would be differenced from that of them. In this study, it was conducted to evaluate variety characteristics on changing of exhaust gas composition by each $NO_x$ control device, and the heavy duty diesel trucks were chosen as experimental vehicles. From the result, it revealed that vehicles (with EGR) were discharged higher THC as 52.5% than that of others (with SCR). However, it did not followed that trend, in the case of CO; it was discharged as 57.2% lower than that of others (with SCR). In the future, these data would be used to apply to efficient $NO_x$ control device for meeting to EURO 6.

Study of Grid Dependency of Sheet Atomization Model of a Pressure-Swirl Atomizer (스월형 분사기 분무 예측 모델에서의 격자 의존성 연구)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.817-824
    • /
    • 2010
  • An improved spray model of a pressure-swirl atomizer was developed and the grid dependency of the model was investigated. Since the Lagrangian-Eulerian approach was adopted for tracking droplets, very small grids could not be used. However, in order to detect swirl flow accurately, small grids were needed because of the consideration of swirl injection. In order to overcome these limitations, numerical studies were performed by using various grids with cell sizes ranging from 10.0 $\times$ 10 mm to 0.625 $\times$ 0.625 mm. From these calculated results, it was observed that the most efficient grid cell size was 1.25 $\times$ 1.25 mm.

Evaluation of Accelerated Retirement Program for In-use Diesel Vehicles based on their NOx Emission Characteristics (노후 운행경유차의 NOx 배출특성분석 및 조기폐차대책을 통한 삭감 방안 검토)

  • Keel, Jihoon;Lim, Yunsung;Kim, Hyungjun;Roh, Hyungu;Yun, Boseop;Lee, Sangeun;Lee, Taewoo;Kim, Jeongsoo;Choi, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.122-128
    • /
    • 2017
  • Currently, the proportion of diesel vehicles in all automobile has grown significantly over the past few years. Air pollutant also grew up and became a social problem. In particular, the issue of NOx emissions caused by NOx high emission in real driving has become a global issue. Despite the fact that the regulatory and reduction project of the new vehicle is actively carried out, there are no existence regulations of In-use diesel vehicle's NOx emission. Therefore, the emission characteristics of the in-use diesel vehicles were investigated to seek ways to reduce NOx emissions in this study. The test targets were used in 237 close inspection of exhaust gases and model year varied from 1996 to 2011. However, the classification of emissions by emission standards differed considerably from NOx emissions. This means that the selection method for early retirement targets should be converted from model year to amount of emissions. If the current early retirement program was applied to the existing system, pre-Euro 3 was 22.530 g/km and Euro 4 was 21.810 g/km to NOx reduction. However, when the vehicle was changed to high emission target vehicle, NOx reduction increase maximum 84.705 kg/yr. According to the study results, an effective reduction in NOx emissions can be achieved if an earlier target in expanded to Euro 4 vehicles.

Soft Magnetic Property of Ternary Fe-9.8Si-6.0Al Alloy Using by Recycling Fe-Si Electrical Steel Sheet Scrap (Fe-Si 전기강판 폐스크랩을 이용한 3원계 Fe-9.8Si-6.0Al 합금의 연자성 특성)

  • Hong, Won Sik;Yang, Hyoung Woo;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Fe-9.8Si-6.0Al mother alloy was manufactured using by Fe-3.5Si recycled scrap and Si powder. And then, soft magnetic alloy powder of $D_{50}$ size and sphere type were prepared by gas atomization process. To obtain the soft magnetic powder of a high aspect ratio, in the first, we conducted the ball milling process for 8 hours. And heat treatment was performed under $650^{\circ}C$, 2 hours and $N_2$ atmosphere condition for reducing the residual stress of the powder. Based on these process, we made around $50{\mu}m$ diameter Fe-9.8Si-6.0Al powder, which morphology and shape was a similar to the commercial Fe-Si-Al powder. Finally, the soft magnetic sheets were prepared by tape casting process using by those powders. The permeability of the tape casting sheet was measured, and we confirmed the possibility of reusing to the soft magnetic materials of Fe-Si electric sheet scrap.

A Study on Emission Characteristics of VOCs During Cold Start Test Mode for Motorcycles (냉간모드에서의 이륜자동차 VOCs 배출특성연구)

  • Lee, Jongtae;Yoo, Heung-Min;Son, JiHwan;Yun, Changwan;Mun, SunHee;Park, Gyu-Tae;Kim, JeongSoo
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Recently, some researchers have been carried out risk assessment of vehicles exhaust on human health. Especially, some of VOCs which is non-controlled, was classified to hazardous pollutant, such as 1,3-Butadiene and BTEX(Benzene, Toluene, Ethylbenzene and Xylene). Therefore, the profile on non-controlled pollutant may be needed in the future, because it would be critical data or information to control them. Additionally, with increasing amount of motorcycle, the source profiling is essential for estimating emission factor and amount on motorcycle exhaust. For these, in this study, imported motorcycles (8 vehicles) were selected as a test model while considering the increasing ratio on sales volume between 2013 and 2014; it was also compared with domestic motorcycles on those. The experiment was conducted by driving mode, UDC and ECE+EUDC that made from EURO III. In addition, it was performed at cold start driving mode without effect by displacement, for evaluating only correlation of BTEX with HC. In order to apply the ratio (m,p-Xylene/o-Xylene) as a marker, the ratio was compared with those of tunnel, road side and residential area. As a result, it showed best correlation ($R^2=0.98$) among those. In the future, it has to be considered as a marker for effect evaluation to atmospheric environment by exhaust emission.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

A Prediction on the Flammability Limits of Biodiesel Fuel in the High Temperature and Pressure Conditions (고온·고압 조건에서 바이오디젤의 가연한계 예측)

  • Lim, Young Chan;Jung, Jun Woo;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.157-162
    • /
    • 2019
  • This numerical study was analyzed to predict the flammability limits of biodiesel and diesel fuels in the high temperature and pressure conditions. To achieve this, the biodiesel fuel was simulated with the chemical species of n-heptane (n-C7H16), methyl decanoate (C11H22O2), and methyl-9-decenoate (C11H20O2), and the diesel fuel was substituted the chemical species of n-heptane. The closed 0-D homogeneous reactor model which was employed the 1100 K of ambient temperature and 35 atm of ambient pressure was used for the simulation of constant volume combustion, and the equivalence ratio was changed from 0.3 to 2.5 conditions. In addition, a comparative analysis study was conducted with the results of HCCI engine simulation and flammability limits according to the changes of equivalence ratio. The results of combustion temperature, pressure, and ignition delay were increased when the equivalence ratio elevated from 0.3 to 1.3 conditions because the increase in fuel oxidation rate affects the chemical reaction of the overall combustion process. Furthermore, the CO and NOX production under the rich combustion conditions are considered to have a trade off relationship since the OH radicals and O2 chemical species are greatly affected the CO and NOX production and oxidation processes.