• Title/Summary/Keyword: Liquid Adsorption

Search Result 255, Processing Time 0.027 seconds

Fabrication of Meso/Macroporous Carbon Monolith and its Application as a Support for Adsorptive Separation of D-Amino Acid from Racemates

  • Park, Da-Min;Jeon, Sang Kwon;Yang, Jin Yong;Choi, Sung Dae;Kim, Geon Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1720-1726
    • /
    • 2014
  • (S)-Alanine Racemase Chiral Analogue ((S)-ARCA) was used as an efficient adsorbent for the selective separation of D-amino acids (D-AAs), which are industrially important as chiral building blocks for the synthesis of pharmaceutical intermediates. The organic phase, containing (S)-ARCA adsorbent and phase transfer reagents, such as ionic liquid type molecules (Tetraphenylphosphonium chloride (TPPC), Octyltriphenylphosponium bromide (OTPPBr)), were coated on the surfaces of mesoporous carbon supports. For the immobilization of chiral adsorbents, meso/macroporous monolithic carbon (MMC), having bimodal pore structures with high surface areas and pore volumes, were fabricated. The separation of chiral AAs by adsorption onto the heterogeneous (S)-ARCA was performed using a continuous flow type packed bed reactor system. The effects of loading amount of ARCA on the support, the molar ratio of AA to ARCA, flow rates, and the type of phase transfer reagent (PTR) on the isolation yields and the optical purity of product D-AAs were investigated. D-AAs were selectively combined to (S)-ARCA through imine formation reaction in an aqueous basic solution of racemic D/L-AA. The (S)-ARCA coated MMC support showed a high selectivity, up to 95 ee%, for the separation of D-type phenylalanine, serine and tryptophan from racemic mixtures. The ionic liquids TPPC and OTPPBr exhibited superior properties to those of the ionic surfactant Cetyltrimethyl ammonium bromide (CTAB), as a PTR, showing constant optical purities of 95 ee%, with high isolation yields for five repeated reuses. The unique separation properties in this heterogeneous adsorption system should provide for an expansion of the applications of porous materials for commercial processes.

Extracting Gold from Pyrite Roster Cinder by Ultra-Fine-Grinding/Resin-in-Pulp

  • Guo, Bingkun;Wei, Junting
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.337-341
    • /
    • 2001
  • A new method to extract gold from pyrite roster cinder, which combines ultra-fine-grinding with resin-in-pulp, has been studied in this paper. Compared with traditional leaching technology, it can short leaching time, avoid complex filter process, lower sodium cyanide consumption and increase gold recovery by 35%. During leaching, aluminium oxide ball was used as stirred medium, hydrogen peroxide as leaching aid and sodium hexametaphosphate as grinding aid. With the high efficiency and chemistry effect of ultra-fine-grinding, the leaching process was developed and the gold leaching rate may reach 88%. With AM-2 Б resin as abosorber and sulfocarbamide (TU) as eluent, gold was recovered from cyanide pulp by resin-in-pulp. AM-2 Б resin has good adsorbability in cyanide solution(pH=10). It was easy to elude gold from the loaded resin with 0.1㏖/L cholhydric acid and 1㏖/L sulfocabamide. The effect of contact time, temperature and acidity etc. on the gold absorption had been examined with static methods. The results showed that the adsorption and desorption of gold could both reach over 98%. The effects of flow rate of solution on dynamic adsorption and elution of gold had been examined with dynamic methods. Breakthrough curve and elution curve had been drawn in this paper. A mild condition was determined through a number of experiments: leaching time 2 hours, liquid solid ratio 4:1, sodium cyanide 3kg/t, hydrogen peroxide 0.05%, sodium hexametaphosphate 0.05%; adsorption time 30 minutes, temperature 10-3$0^{\circ}C$, resin($m\ell$) solid(g) ratio 1:10, eluent resin ratio 10-20:1, velocity of eluent $1.5m\ell$/min. Under the mild condition, the gold recovery may reach 85%.

  • PDF

Investigation of Liquid Phase Ammonia Removal Efficiency by Chemo-biological Process of Zeolites and Klebsiella pneumonia sp. (제올라이트와 Klebsiella pneumonia sp.을 이용한 화학-생물학적 액상 암모니아의 제거 효율 연구)

  • Park, Min Seob;Choi, Kwon-Young
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.685-690
    • /
    • 2017
  • Ammonia is a useful substance which is widely used in various industries. It is generally released by the decomposition of agricultural wastes and known to have toxic effects on human beings. Due to the common usage, it is possible to cause water pollution through either direct or indirect leakage. Such cases, it is preferable to use the adsorption capacity of zeolite to rapidly remove ammonium ions, but it is not sufficiently removed by the adsorption only. In this paper, the removal efficiency of ammonium ion through both the adsorption capacities of commercial synthetic zeolites and the biological mechanism of microorganisms were compared. In addition, microorganisms were immobilized on the zeolite in order to enhance the removal efficiency by applying a chemo-biological process. As a result, the standard commercial zeolite showed 67~81% of the removal efficiency in 2~4 hours at a 100 ppm concentration of ammonium, whereas the selected microorganism Klebsiella pneumoniae subsp. Pneumoniae showed up to 97% within 8 hours. When the microorganism was immobilized on the zeolite, the highest removal efficiency of approximately 98.5% were observed within 8 hours.

Development and Evaluation of Impregnated Carbon Systems Against Iodine Vapours

  • Srivastava, Avanish Kumar;Saxena, Amit;Singh, Beer;Srivas, Suresh Kumar
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.274-279
    • /
    • 2007
  • In order to understand the breakthrough behaviour of iodine vapours on impregnated carbon systems, an active carbon, 80 CTC grade, $12{\times}30$ BSS particle size and $1104\;m^2/g$ surface area, was impregnated with metal salts such Cu, Cr, Ag, Mo and Zn, and an organic compound Triethylene diamine (TEDA) to prepare different carbon systems such as whetlerite, whetlerite/TEDA, whetlerite/KI/KOH and ASZMT. The prepared adsorbents along with active carbon were characterized for surface area and pore volume by $N_2$ adsorption at liquid nitrogen temperature. These carbon systems were compared for their CT (concentration X time) values at 12.73 to 53.05 cm/sec space velocities and 2 to 5 cm carbon column bed heights. The carbon column of 5.0 cm bed height and 1.0 cm diameter was found to be providing protection against iodine vapours up to 5.5 h at 3.712 mg/L iodine vapour concentration and 12.73 cm/sec space velocity. The study clearly indicated the adsorption capacities of carbon systems to be directly proportional to their surface area values. Dead layer with all the prepared carbon systems was found to be less than 2.0 cm indicating it to be minimum bed height to have protection against $I_2$ vapours. Effect of carbon bed height and flow rate was also studied. The active carbon showed maximum protection at all bed heights and flow rates in comparison to all other impregnated carbon systems, showing that only physical adsorption is responsible for the removal of iodine vapours.

Characteristics of Desorption and Recycling Capacity for Previously Adsorbed Silver into Waste Coffee Grounds (커피찌꺼기에 흡착된 은 이온의 탈착 및 재생 특성)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.15-21
    • /
    • 2016
  • This experiment was conducted to test desorption and recycling characteristics for silver ion adsorbed into waste coffee grounds by using various desorbing agents such as nitric acid, ethylene diamine triacetic acid (EDTA) and nitrilo triacetic acid (NTA). It is appeared that the highest desorption efficiency for silver ions was obtained as about 97.8 % by 1.0 M of nitric acid solution. Also, in the case of less than 1.0 of the ratio of solid and liquid (S/L) (g/L), silver ions adsorbed onto coffee grounds was desorbed as about 98~100 %, and most of desorption process was completed within 60min. In addition, adsorption capacity of reused waste coffee grounds for silver ions was highly maintained as about 43.9 mg/g until the $2^{nd}$ cycle, as compared with the adsorption capacity with 45.9 mg/g of the adsorption capacity for virgin waste coffee grounds.

Separation of Cu(II) from Metal Mixture Solution Using a Hexadecyl $NtnOenH_4$-Octadecylsilanized Silicas(ODS) in Liquid Chromatography (액체 크로마토그래피에서 Hexadecyl $NtnOenH_4$-Octadecylsilanized silicas(ODS)를 이용한 혼합금속용액으로부터 Cu(II)의 분리)

  • Shin, Young-Kook;Kim, Si-Joong;Kim, Hae-Joong
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.299-304
    • /
    • 1995
  • The adsorption behaviors of Ba(II), Cr(II), Fe(II) and Cu(II) on the N, N'-bispalmtoyl 1, 12-diaza-3, 4:9, 10-dibenzo-5, 8-cyclopentadecane (hexadecyl $NtnOenH_4$)-octadecylsilanized silicas(ODS) were investigated with water as the mobile phase. Binding constants for metal ions were measured in aqueous solution. The order of binding constants(K) and the degree of sorption(E) were Ba(II)$NtnOenH_4$-octadecyisiianized silicas(ODS) increased with concentration of metal ions, and the degree of adsorption was found to be affected by the cation-chelation mechanism. The experimental results showed good efficiency for separation of Cu(II) from mixtures of Ba(II), Cr(II), Fe(II) and Cu(II) in aqueous solution.

  • PDF

Studies on the Sorption and Fixation of Cesium by Vermiculite (II)

  • Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.97-111
    • /
    • 1974
  • The adsorption mechanism of Cs-137 in low level radioactive solution by vermiculite treated with Na ion is studied in order to investigate its effective utilization for the radioactive effluent treatment. The beneficial role of Na-vermiculite is that Na ion can induce the wider c-axis spacing in which Cs ion can be sorbed in vermiculite. Cation exchange capacity and distribution coefficient of cesium seems to be influenced by the variation of c-axis spacing of vermiculite. Comparative identification and detection with the characteristic analyses of X-ray diffraction and electron diffraction patterns, diffrential thermal analysis and electron microscopy of Na-, K- and Cs-vermiculite are studied for the phemomena of Cs adsorption by vermiculite. This importance of the utilization in terms of adsorption and fixation of cesium involving vermiculite is discussed. It is found that the Na-vermiculite is valuable outside charging material for high level radioactive liquid waste storage tank of underground to protect the pollution of the underground water.

  • PDF

Adsorption and Storage of Hydrogen by Nanoporous Adsorbents (나노세공체 흡착제에 의한 수소 흡착 및 저장)

  • Jhung, Sung Hwa;Chang, Jong-San
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2007
  • Efficient and inexpensive hydrogen storage is an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources for $21^{st}$ century. In this review, several storage techniques are briefly reviewed and compared. Especially, adsorption/storage via physisorption at low temperature, by using nanoporous adsorbents, is reviewed and evaluated for further developments. The adsorption over a porous material at low temperature is currently investigated deeply to fulfill the storage target. In this review, several characteristics needed for the high hydrogen adsorption capacity are introduced. It may be summarized that following characteristics are necessary for high storage capacity over porous materials: i) high surface area and micropore volume, ii) narrow pore size, iii) strong electrostatic field, and iv) coordinatively unsaturated sites, etc. Moreover, typical results demonstrating high storage capacity over nanoporous materials are summarized. Storage capacity up to 7.5 wt% at liquid nitrogen temperature and 80 atm is reported. Competitive adsorbents that are suitable for hydrogen storage may be developed via intensive and continuous studies on design, synthesis, manufacturing and modification of nanoporous materials.

Comparison of Preparation Methods for the Quantification of Ginsenosides in Raw Korean Ginseng

  • Hong, Hee-Do;Sim, Eun-Mi;Kim, Kyung-Tack;Rho, Jeong-Hae;Rhee, Young-Kyung;Cho, Chang-Won
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.565-569
    • /
    • 2009
  • This study was conducted to evaluate the effects of different preparation methods on the recovery and quantification of ginsenosides in raw Korean ginseng (Panax ginseng C.A. Meyer). Eight major ginsenosides ($Rb_1$, $Rb_2$, $Rb_3$, Rc, Rd, Re, Rf, and $Rg_1$) were analyzed by high performance liquid chromatography (HPLC), after which the recovery and repeatability of the extraction of those ginsenosides using 3 different preparation methods were compared [A. direct extraction (DE) method, hot MeOH extraction/evaporation/direct dissolution; B. solid phase extraction (SPE) method, hot MeOH extraction/evaporation/dissolution/$C_{18}$ cartridge adsorption/MeOH elution; C. liquid-liquid extraction (LLE) method, hot MeOH extraction/evaporation/dissolution/n-BuOH fractionation]. Use of the DE method resulted in a significantly higher recovery of total ginsenosides than other methods and a relatively clear peak resolution. Use of the SPE and LLE methods resulted in clearer peak resolution, but lower ginsenoside recovery than the DE method. The LLE method showed the lowest ginsenoside recovery and repeatability among the 3 methods. Given that the DE method employed only extraction, evaporation, and a dissolution step (avoiding complicate and time consuming purification), this technique may be an effective method for the preparation and quantification of ginsenosides from raw Korean ginseng.

Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs2.5H0.5PMo12O40

  • Gong, Shu-Wen;Liu, Li-Jun;Zhang, Qian;Wang, Liang-Yin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1279-1284
    • /
    • 2012
  • Silica supported $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology.