• Title/Summary/Keyword: Liquid Adsorption

Search Result 255, Processing Time 0.025 seconds

Molecular Size Distributions of NOM in Conventional and Advanced Water Treatment Processes (기존수처리 공정 및 고도정수처리 공정에서 NOM의 분자크기 분포 변화)

  • Choi, Il-Hwan;Jung, Yu-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.682-689
    • /
    • 2008
  • The purpose of this study was to find out the variation between molecular size distribution (MSD) of natural organic matter (NOM) in raw waters after different water treatment processes like conventional process (coagulation, flocculation, filtration) followed by advanced oxidation process (ozonation, GAC adsorption). The MSD of NOM of Suji pilot plant were determined by Liquid Chromatography-Organic Carbon Detection (LC-OCD) which is a kine of high-performance size-exclusion chromatography (HPSEC) with nondispersive infrared (NDIR) detector and $UV_{254}$ detector. Five distinct fractions were generally separated from water samples with the Toyopearl HW-50S column, using 28 mmol phosphate buffer at pH 6.58 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface water. High molecular weight (HMW) matter was clearly easier to remove in coagulation and clarification than low molecular weight (LMW) matter. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. No more distinct variation of MSD was observed by ozone process after sand filtration but the SUVA value were obviously reduced during increase of the ozone doses. UVD results and HS-Diagram demonstrate that ozone induce not the variation of molecular size of humic substance but change the bond structure from aromatic rings or double bonds to single bond. Granular activated carbon (GAC) filtration removed 8~9% of organic compounds and showed better adsorption property for small MSD than large one.

Separation of Functionalized Heterocyclic Compounds by High Performance Liquid Chromatography(I) (고성능 액체 크로마토그래피에 의한 기능성 헤테로고리화합물의 분리(I))

  • Lee, Kwang-PilI;Cho, Yun Jin;Lee, Young Cheol
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.408-417
    • /
    • 1997
  • Normal phase or reversed phase liquid chromatographic separation of some structural isomers of functionalized heterocyclic compounds has been carried out by using several different columns and various mobile phases. The optimal experimental conditions for separation of structural isomers were found on a ternary solvent system including alcohol as a modifier. This polar modifier is preferentially adsorbed onto strong adsorption site, leaving a more uniform population of weaker site that then serve to retain the sample. This 'deactivation' of the adsorbent leads to a number of improvements in subsequent separations. The optimal mobile phase system of separation were found on normal phase on structural isomers. Retention mechanism of normal phase system was also studied depending on adsorption strength between solute and stationary phase of column. However, retention factors of reversed phase system were found on hydrophobic interaction with solvophobic effect.

  • PDF

Column cleaning, regeneration and storage of silica-based columns (실리카 기반 컬럼의 세척, 재생 및 보관 가이드)

  • Matt James;Mark Fever
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.1.1-1.4
    • /
    • 2024
  • This article provides comprehensive guidance on the maintenance, cleaning, regeneration, and storage of silica-based HPLC (High-Performance Liquid Chromatography) columns. The general considerations emphasize the importance of using in-line filters and guard cartridges to protect columns from blockage and irreversible sample adsorption. While these measures help, contamination by strongly adsorbed sample components can still occur over time, leading to an increase in back pressure, loss of efficiency, and other issues. To maximize column lifetime, especially with UHPLC (Ultra-High Performance Liquid Chromatography) columns, it is advisable to use ultra-pure solvents, freshly prepared aqueous mobile phases, and to filter all samples, standards, and mobile phases. Additionally, an in-line filter system and sample clean-up on dirty samples are recommended. However, in cases of irreversible compound adsorption or column voiding, regeneration may not be possible. The document also provides specific recommendations for column cleaning procedures, including the flushing procedures for various types of columns such as reversed phase, unbonded silica, bonded normal phase, anion exchange, cation exchange, and size exclusion columns for proteins. The flushing procedures involve using specific solvents in a series to clean and regenerate the columns. It is emphasized that the flow rate during flushing should not exceed the specified limit for the particular column, and the last solvent used should be compatible with the mobile phase. Furthermore, the article outlines the storage conditions for silica based HPLC columns, highlighting the impact of storage conditions on the column's lifetime. It is recommended to flush all buffers, salts, and ion-pairing reagents from the column before storage. The storage solvent should ideally match the one used in the initial column test chromatogram provided by the manufacturer, and column end plugs should be fitted to prevent solvent evaporation and drying out of the packing bed.

  • PDF

Evaluation of Physical Property on EM Media for Water Treatment (수처리용 EM 담체의 물리적 특성 평가)

  • Bae, Su-Hyun;Ra, Deog-Gwan
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.493-502
    • /
    • 2018
  • The purpose of this study was to develop EM media for water treatment and to remove nitrogen and phosphorus which cause water algae boom in water system. The ideal mixing ratio of raw material such as clay: zeolite: vermiculite: activated carbon for manufacturing the EM media was 10: 2.5: 0.1: 2, and the calcination temperature was $700^{\circ}C$. The comparison of the physical properties of manufactures using distilled water and EM activated liquid as the material mixture are as follows. Porosity and density of EM media were 39.98 % and $1.13kg/m^3$, adsorption efficiencies of nitrogen and phosphorus were 69.3 % and 38.9 %. In contrast, porosity and density of distilled water media were 37.80 % and $1.11kg/m^3$, and adsorption efficiencies of nitrogen and phosphorus were 62.5 % and 37.8 %. The adsorption rate of nitrogen and phosphorus in the EM media was higher than that of the distilled water made one by 6.8 % and 1.1 %, respectively. The adsorption characteristics of the media to nitrogen and phosphorus could be expressed by the Freudlich adsorption isotherm. The change of calcination time did not affect the adsorption efficiency of phosphorus and nitrogen when EM media was formed, but it was considered that it affects the strength of media. Nitrogen removal efficiency was the best record in 4 hours of calcination time and 3 hours of calcination time in phosphorus removal efficiency.

Isolation and Identification of Pratensein with Antimicrobial Activity from the Peanut Shells (땅콩껍질에서 항미생물 활성을 지닌 pratensein의 분리 및 동정)

  • Wee, Ji-Hyang;Moon, Jae-Hak;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.643-647
    • /
    • 2004
  • Natural antimicrobial substance from peanut (Arachis hypogaea) shells was isolated and structurally elucidated. Peanut shells were extracted with methanol (MeOH) and concentrated in vacuo, MeOH extract was solvent-fractionated with ethyl acetate (EtOAc) and various buffer to obtain EtOAc acidic, neutral, and phenolic fractions. EtOAc neutral fraction, which showed antimicrobial activity, was purified through silica gel adsorption column, Sephadex LH-20 column, ODS column, and high performance liquid chromatographies, and its active substance was isolated and identified as pratensein (3',5,7-trihydroxy-4'-methoxyisoflavone) by spectroscopic methods of proton-nuclear magnetic resonance, mass spectrometry, and nuclear overhauser enhancement spectroscopy.

Characteristics of pre-extracted hemicelluloses from Korean mixed wood by hot water and alkali solution and its effect on handsheet properties (열수 및 알칼리 용액을 이용하여 국산 목재 칩으로부터 선추출한 헤미셀룰로오스의 특성과 이에 따른 수초지 물성 변화)

  • Seo, Dong-Il;Lee, Sang-Hoon;Sim, Kyu-Jeong;Lee, Hak-Lae;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.60-67
    • /
    • 2011
  • Hemicelluloses pre-extracted from Korean mixed wood chip were investigated as a wet-end additive. Hemicelluloses dissolved in hot water and alkali solution were isolated by ethyl alcohol precipitation from pre-extractives. They showed molecular weight of 9,000 ~ 27,000 g/mol as revealed by size exclusion chromatography. The reduction of molecular weight through hot water extraction was caused by autohydrolysis. Chemical composition of the hemicelluloses were analyzed with high-performance liquid chromatography and UV-Vis spectroscopy. As the surface charge of isolated hemicelluloses were negative, the adsorption of hemicelluloses onto softwood unbleached kraft pulp fiber was promoted by poly-DADMAC. The physical properties of handsheets increased as the molecular weight of hemicellulose increased. On the other hands, the optical property decreased with hemicellulose adsorption.

Effect of Peptide Charge on the Formation of Acylated Peptide Impurities in PLGA Formulations

  • Na, Dong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.91-94
    • /
    • 2011
  • The purpose of this study was to investigate the effect of peptide charge on the interaction between peptide and poly(D,L-lactide-co-glycolide) (PLGA) for evaluating mechanism of acylated peptide formation in PLGA matrix. As a model peptide, octreotide, a synthetic somatostatin analogue and active ingredient of commercial PLGA product, was used. The disulfide group of octreotide was reduced with dithiothreitol and the sulfhydryl groups were modified with N-${\beta}$-maleimidopropionic acid (BMPA) to neutralize octreotide with positive charge in physiological conditions. The BMPA-conjugated octreotide was identified by measuring the molecular mass with liquid chromatography-mass spectrometry. In the interaction study with PLGA, native octreotide showed initial adsorption to PLGA and substantial production of acylated peptides (56% of overall peptide), whereas BMPA-conjugated octreotide showed minimal adsorption to PLGA and no acylation products for 42 days. Consequently, the neutralization of octreotide completely inhibited the peptide acylation by preventing interaction of peptide with PLGA. In conclusion, this study demonstrates that the initial polymer interaction of peptide is important step for peptide acylation in PLGA matrix and suggests the modulation of peptide charge as strategy for inhibiting the formation of acylated peptide impurities.

Isolation of 3,4-Dihydroxybenzoic Acid, Which Exhibits Antimicrobial Activity, from Fruits of Gardenia jasminoides Ellis (치자 열매에서 항미생물 활성을 갖는 3,4-Dihydroxybenzoic Acid의 분리)

  • Yim, Cheol-Keun;Moon, Jae-Hak;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1386-1391
    • /
    • 1999
  • The methanol extract of Gardenia jasminoides Ellis showed antimicrobial activity against bacteria and yeasts. The extract was successively purified with solvent fractionation, silica gel adsorption column chromatography, Sephadex LH-20 column chromatography, octadecylsilane column chromatography. The purified active substance was isolated by high performance liquid chromatography. The isolated compound was 3,4-dihydroxybenzoic acid which was determined by mass spectrometer, gas chromatograph-mass spectrometer, $^{1}H-nuclear$ magnetic resonance, $^{13}C-nuclear$ magnetic resonance and two-dimensional nuclear magnetic resonance. The content of 3,4-dihydroxybenzoic acid was $32.7\;{\mu}g/g$ in dried fruits of Gardenia jasminoides Ellis.

  • PDF

Solid Phase Extraction of Celecoxib from Drug Matrix and Biological Fluids by Grafted Poly β-cyclodextrine/allyl Amine Magnetic Nano-particles

  • Kamari, Sahar;Panahi, Homayon Ahmad;Baimani, Nasim;Moniri, Elham
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.287-295
    • /
    • 2017
  • Using nanotechnology, magnetic nanoparticles of iron oxide were produced via co-precipitation method and followed modification with organic compounds. In the next step, functionalized monomer was provided via coupling ${\beta}$-cyclodextrine and allylamine onto modified magnetic nanoparticles. These nanoparticles were used to establish the adsorption rate of celecoxib. Magnetic nanoparticles are modified by (3-mercaptopropyl)trimethoxysilane. Nano-adsorbent was characterized by analytical and spectroscopic methods, such as Fourier transform infrared spectroscopy, elemental analysis, thermo-gravimetric analysis, and transmission electron microscopy (TEM). Laboratory parameters, such as the kinetics of adsorption isotherms, pH, reaction temperature and capacity were optimized. Finally, by using this nano-adsorbent in the optimized condition, extraction of celecoxib from biological samples as urine, drug matrix and blood plasma was carried out by high performance liquid chromatography with sensitivity and high accuracy.

Molecular Area and Interfacial Tension Behavior of Span 20 and Tween series surfactants at water/air interface (Span 20과 Tween계 계면활성제의 물/공기 계면에서의 분자면적과 계면장력 거동)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.7
    • /
    • pp.1065-1072
    • /
    • 2000
  • The molecular areas and the interfacial tension behavior of ten nonionic surfactants, i.e., Span 20 and Tween 20, 40, 60. 80, 21, 61, 81, 65, & 85 are tested to assay their effects on the wetting and liquid retention properties of hydrophilic and hydrophobic fibrous materials. The molecular areas at water/air interface are derived from Gibbs’adsorption equations. The following conclusions are drawn from the results: 1) Span 20 is efficient in lowering the interfacial tension and effective in adsorption at the water/air interface, resulting in the low interfacial tension at critical micelle concentration (${\gamma}$$_{CMC}$) and a small molecular area($\omega$), 2) when the hydrophiles of the surfactants are constant, $\omega$’s increase as hydrophobe carbon numbers of the surfactants increase, 3) when the hydrophobes are constant, ${\gamma}$$_{CMC}$’s and $\omega$’s increase as the hydrophile ethylene oxide units increase, indicating effectiveness and efficiency is parallel in this case, 4) the ethylene oxide unit length as a hydrophile has greater influence on u than the hydrophobe chain length.han the hydrophobe chain length.gth.

  • PDF