• Title/Summary/Keyword: Liquid Additives

Search Result 281, Processing Time 0.026 seconds

Properties of Electro-Conductive SiC-TiB2 Composites (도전성 ${\beta}-SiC-TiB_2$ 복합체의 특성)

  • Shin, Yong-Deok;Park, Mi-Lim;Song, Joon-Tae;Yim, Seung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.72-75
    • /
    • 2000
  • The effect of $Al_2O_3+Y_2O_3$ additives on fracture toughness of ${\beta}-SiC-TiB_2$ composites by hot-pressed sintering were investigated, The ${\beta}-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 4, 8, 12wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 97% of the theoretical density and the porosity increased with increasing $Al_2O_3+Y_2O_3$ contents because of the increasing tendency of pore formation. But the fracture toughness showed the highest of $7.0MPa{\cdot}m^{1/2}$ for composites added with 12wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity showed the lowest of $1.59\times10^{-3}\Omega{\cdot}cm$ for composite added with 8wt% $Al_2O_3+Y_2O_3$ additives at room temperature and is all positive temperature coefficient resistance(PTCR} against temperature up to $700^{\circ}C$.

  • PDF

Manufacture and Properties of $SiC-TiB_2$Electroconductive Ceramic Composites for Pressureless Sintering (상압소결을 위한 $SiC-TiB_2$ 전도성 세라믹 복합체의 제조와 특성)

  • Ju, Jin-Yeong;Sin, Yong-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.500-503
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and pressureless annealed SiC+39vol.%$TiB_2$electroconductive ceramic composites were investigated as a function of the liquid additives of $Al_2O_3+Y_2O_3$. The result of phase analysis for the SiC+39vol.%$TiB_2$composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and $YAG(Al_5Y_3O_{12})4 crystal phase. The relative density of SiC+39vol.%$TiB_2$ composites was increased with increased $Al_2O_3+Y_2O_3$. contents. The fracture toughness showed the highest value of $7.8 MPa.m^{1/2}$ for composites added with 12 wt % $Al_2O_3+Y_2O_3$. additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest value of $7.3\times10_{-4}\Omega.cm\; and\; 3.8\times10_{-3}/^{\circ}C$ for composite added with 12 wt% $Al_2O_3+Y_2O_3$. additives at room temperature. The electrical resistivity of the SiC+39vol.%$TiB_2$composites was all positive temperature coefficient resistance(PTCR) in the temperature ranges from $25^{\circ}C\; to\; 700^{\circ}C$.

  • PDF

Properties and Manufacture of $\beta-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering(II) (액상소결에 의한 $\beta-SiC-ZrB_2$ 복합체의 제조와 특성(II))

  • Yoon, Se-Won;Hwang, Chul;Ju, Jin-Young;Shin, Yong-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.92-97
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC+39vol. %ZrB2 electroconductive ceramic composites were investigated by adding 1, 2, 3wt% Al2O3+Y2O3(6:4wt%) of the liquid forming additives. In this microstructures, no reactions were observed between $\beta-SiC$ and ZrB2. The relative density is over 90.8% of the theoretical density and the porosity decreased with increasing Al2O3+Y2O3 contents. Phase analysis of the composites by XRD revealed $\alpha-SiC(6H, 4H)$, ZrB2 and $\beta-SiC$(15R). Flexural srength showed the highest of 315.5MPa for composites added with 3wt% Al2O3+Y2O3 additives as room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 5.5MPa.m1/2 and 5.3MPa.m1/2 for composites added with 2wt% and 3wt% Al2O3+Y2O3 additives respectively at room temperature. The area fraction of the elongated SiC grain in the etched surface of sample showed 65% and 65.1% for composite added with 2wt% and 3wt% Al2O3+Y2O3 additives respectively. The electrical resistivity at room temperature. The electrical resistivity of the composites wall all positive temperature coefficient(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

Manufacture of $\beta-SiC-TiB_2$ Composites Densified by Liquid-Phase Sintering (액상소결에 의한 $\beta-SiC-TiB_2$ 복합체의 제조와 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Park, Mi-Lim;So, Byung-Moon;Lim, Seung-Hyuk;Song, Joon-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.479-481
    • /
    • 2000
  • The effect of $Al_{2}O_{3}+Y_{2}O_{3}$ additives on fracture toughness of $\beta-SiC-TiB_2$ composites by hot-pressed sintering were investigated. The f$\beta-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 16, 20, 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 95.88% of the theoretical density and the porosity increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest of $5.88MPa{\cdot}m^{1/2}$ for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity showed the lowest of $5.22{\times}10^{-4}\Omega{\cdot}cm$ for composite added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature and is all positive temperature coefficient resistance (PTCR) against temperature up to $700^{\circ}C$.

  • PDF

Properties of ${\beta}$-SIC TiB$_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering(Ⅱ) (液狀 燒結에 의한 ${\beta}$-SIC TiB$_2$系 導電性 複合體의 特性(Ⅱ))

  • Shin, Yong-Deok;Yim Seung-Hyuk;Song Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.263-270
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and annealed ${\beta}-SiC-TiB_2$,/TEX> electroconductive ceramic composites were investigated as function as functions of the liquid forming additives of $Al_2O_3+Y_2O_3$. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$,/TEX>, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_3$ contents in pressureless annealing method because YAG of reaction between $Al_2O_3$ was increased. The flexural strength showed the highest value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives in pressed annealing method at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed 7.1 MPa ${\cdot}\;m^{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest value of $6.0{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm(25\'^{\circ}C}$ and $3.0{\times}10^{-3}/^{\circ}C$ for composite added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature, respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature ranges from 25 $^{\circ}C$ to 700 $^{\circ}C$.

  • PDF

The Properties of $\beta-SiC-TiB_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering (액장 소결한 $\beta-SiC-TiB_2$계 전도성 복합체의 특성)

  • Yim, Seung-Hyuk;Shin, Yong-Deok;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.510-515
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of Al_2O_3+Y_2O_34. The result of phase analysis of composites by XRD revealed $\alpha-SIC(6H)\;TiB_2,\; and YAG(Al5Y3O12) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_34 contents because YAG of reaction between $Al_2O_3\; and\; Y_2O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. Owing to crack deflection crack bridging phase transition and TAG of fracture toughness mechanism the fracture toughness showed 7.1MPa.m1/2 for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest of $6.0\times10-4\Omega.cm\; and\; 3.1\times10-3/^{\circ}C4 respectively for composite added with 12wt% \Omega additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}C$.

  • PDF

A study on the physical properties effect of additive on the Jet A-1 (첨가제를 이용한 Jet A-1 연료의 물성증대 효과 연구)

  • Joo, Hyeong-Uk;Joo, Hyun-Hye;Lee, Ji-Hun;Kwon, Tae-Soo;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.702-704
    • /
    • 2011
  • For the representative of the poor performance of liquid fuel(Jet A-1), the physical properties effests of different additive ratios in the liquid fuel have been investigated. The mixed liquid fuel could be analyzed by principal factor of liquid fuel such as, density, viscosity and caloric value. This additives will be usefully applied to high energy density liquid fuel development.

  • PDF

Analysis of Biurea Decomposed from Azodicarbonamide in Food Products by High Performance Liquid Chromatography Mass/Mass Spectrometry (LC/MS/MS를 이용한 식품 중 아조디카르본아미드 분해산물인 Biurea 함량 분석)

  • Lim, Ho-Soo;Pahn, Kyeong-Nyeo;Kim, Jun-Hyun;Jang, Gui-Hyeon;Moon, Gui-Im;Yang, Hyo-Jin;Park, Sung-Kwan;Park, Hae-Kyong;Kim, So-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.377-382
    • /
    • 2010
  • This study was conducted to establish a method to analyze biurea decomposed from azodicarbonamide in processed foods such as wheat flour and bread. New method was developed using high performance liquid chromatography mass/mass spectrometry to determine biurea in wheat flour and bakery products. The recovery rate was 94.3-112.5%. The limit of detection for biurea was 0.003 mg/kg, and the limit of quantification was 0.01 mg/kg. The monitoring results for biurea content using established methods showed that biurea was detected at 2.76 mg/kg in the azodicarbonamide-detected flour (detection rate, 2%). The detection rate in processed foods such as baked goods was 27% (16/59). The detection range was 0.19-18.01 mg/kg (average, 3.79 mg/kg). However, it was thought that the detection level was safe due to much lower values than the standard (45 mg/kg). As a result, the newly established biurea analytical method will contribute to the management of azodicarbonamide in processed foods such as wheat flour and bakery products.

Analysis of Azodicarbonamide in Food Products by High Performance Liquid Chromatography (HPLC를 이용한 식품 중 아조디카르본아미드 분석)

  • Lim, Ho-Soo;Bahn, Kyeong-Nyeo;Kim, Jun-Hyun;Jang, Gui-Hyeon;Moon, Gui-Im;Park, Sung-Kwan;Yang, Hyo-Jin;Park, Hae-Kyong;Kim, So-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.2
    • /
    • pp.100-105
    • /
    • 2010
  • This study was conducted to establish a method to analyze azodicarbonamide (ADA) in wheat flour. A new method using high performance liquid chromatography (HPLC) was developed for the determination of ADA in wheat flour. The recovery rate was 91.93~97.54%. The limit of detection for ADA was 0.02 mg/kg and the limit of quantification was 0.05 mg/kg. The monitoring results for ADA contents using the established methods showed that it was detected as the low value of 0.95 mg/kg in one of 51 flour samples (detection rate : 2%), but not detected in 59 bakery samples. The detected ADA level was suitable to its usage standard, compared to the standard (45 mg/kg). Although the detection rate was very low, the established analytical method of ADA will contribute to the management of ADA in processed foods such as wheat flour and bakery.

Monitoring of Preservatives Produced Naturally in Vegetable Raw Materials (식물성 원료 중 천연유래 보존료의 함유량 조사)

  • Soo Bin Lee;Ji Sun So;Geum Jae Jeong;Hye Seon Nam;Jae Myeong Oh;Soon Ho Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.152-162
    • /
    • 2024
  • In this study, we investigated the levels of the natural preservatives, benzoic acid, sorbic acid, and propionic acid, in raw unprocessed vegetables. Quantitative analysis of benzoic acid and sorbic acid was performed using high-performance liquid chromatography with a diode array detector (HPLC-DAD) and confirmed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Propionic acid was analyzed using a gas chromatography-flame ionization detector (GC-FID) and confirmed using gas chromatography-mass spectrometry (GC-MS). From a total of 497 samples, benzoic acid, sorbic acid, and propionic acid were found in 50 (10%), 8 (0.2%), and 61 samples (12.3%), respectively. The highest quantity of benzoic acid, sorbic acid, and propionic acid was found in peony root (1,057 mg/kg), nut-bearing torreya seeds (27.3 mg/kg), and myrrha (175 mg/kg), respectively. The background concentration range of naturally occurring preservatives in raw vegetables determined in this study could be used as standard inspection criteria to address consumer complaints and trade disputes.