• 제목/요약/키워드: Liquefied petroleum gas(LPG)

검색결과 145건 처리시간 0.02초

LPG-DME 압축착화 엔진에서 흡기 가변밸브 영향 (LPG-DME Compression Ignition Engine with Intake Variable Valve Timing)

  • 염기태;배충식
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.158-165
    • /
    • 2008
  • The combustion and exhaust emissions characteristics of a liquefied petroleum gas-di-methyl ether compression ignition engine with a variable valve timing device were investigated under various liquefied petroleum gas injection timing conditions. Liquefied petroleum gas was used as the main fuel and was injected directly into the combustion chamber. Di-methyl ether was used as an ignition promoter and was injected into the intake port. Different liquefied petroleum gas injection timings were tested to verify the effects of the mixture homogeneity on the combustion and exhaust emission characteristics of the liquefied petroleum gas-di-methyl ether compression ignition engine. The average charge temperature was calculated to analyze the emission formation. The ringing intensity was used for analysis of knock characteristics. The combustion and exhaust emission characteristics differed significantly depending on the liquefied petroleum gas injection and intake valve open timings. The CO emission increased as the intake valve open and liquefied petroleum gas injection timings were retarded. However, the particulate matter emission decreased and the nitrogen oxide emission increased as the intake valve open timing was retarded in the diffusion combustion regime. Finally, the combustion efficiency decreased as the intake valve open and liquefied petroleum gas injection timings were retarded.

A Study on the Performance of an LPG (Liquefied Petroleum Gas) Engine Converted from a Compression Ignition Engine

  • Choi, Gyeung-Ho;Kim, Tae-Kwon;Cho, Ung-Lae;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • 에너지공학
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2007
  • The purpose of this study was to investigate the reduction of exhaust gas temperature in a LPG engine that had been converted from a diesel engine. A conventional diesel engine was modified to a LPG (Liquefied Petroleum Gas) engine by replacing the diesel fuel injection pump with a LPG fuel system. The research was performed by measuring the exhaust gas temperature upon varying spark ignition timing, airfuel ratio, compression ratio, and different compositions of butane and propane. Engine power and exhaust temperature were not influenced by various butane/propane fuel compositions. Finally, among the parameters studied in this investigation, spark ignition timing is one of the most important in reducing exhaust gas temperature.

The use of liquefied petroleum gas (lpg) and natural gas in gas turbine jet engines

  • Koc, Ibrahim
    • Advances in Energy Research
    • /
    • 제3권1호
    • /
    • pp.31-43
    • /
    • 2015
  • This paper compares the performance of JP-8(Jet Propellant) fuel and liquefied petroleum gas (LPG) and natural gas in the F110 GE100 jet engine. The cost of natural gas usage in gas turbine engines is lower than JP-8 and LPG. LPG cost is more than JP-8. LPG volume is bigger than JP-8 in the same flight conditions. Fuel tank should be cryogenic for using natural gas in the aircraft. Cost and weight of the cryogenic tanks are bigger. Cryogenic tanks decrease the move capability of the aircraft. The use of jet propellant (JP) is the best in available application for F110 GE 100 jet engine.

Performance and Emissions Characteristics of a Converted Liquefied Petroleum Gas (LPG) Engine with Mixer and Liquid Propane Injection (LPi) System

  • Choi, Gyeung-Ho;Kim, Jin-Ho;Cho, Ung-Lae;Chung, Yon-Jong;Han, Sung-Bin
    • 에너지공학
    • /
    • 제14권3호
    • /
    • pp.187-193
    • /
    • 2005
  • In this study, the performance and emission characteristics of a liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system. A compression ratio of 21 for the base diesel engine, was modified to 8, 8.5, 9 and 9.5. The engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficienry, CO, THC and NOx. Experimental results showed that the LPi system generated higher power and lower emissions than the conventional mixer fuel supply method.

Top-Feed Type 인젝터의 액상분사 LPG연료 분사장치 적용 (Top-Feed Type Port Fuel Injector for Liquefied Petroleum Gas Liquid Phase Injection)

  • 염기태;박정서;배충식;박정남;김성근
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.30-37
    • /
    • 2007
  • The injection and spray characteristics of top-feed type injector was investigated under liquid phase injection fueled with liquefied petroleum gas (LPG). Different pressures and temperatures of fuel injection system were tested to identify the injection characteristics after hot soaking. MIE-scattering technique was used for verification of successful liquid phase injection after hot soaking. In case of bottom-feed type injector, the injection was accomplished at every experimental condition. In case of top-feed type injector, when the pressure of LPG was over 1.2 MPa, the injection was not executed. However, under the pressure were 1.2 MPa, the liquid phase injection after hot soaking was accomplished. The engine with top-feed type fuel injection equipment was restarted successfully after hot soaking.

비황분계 부취제를 혼합한 LPG 연료의 차량 배출가스 특성에 관한 연구 (A Study on the Exhaust Emissions Characteristics of LPG Vehicle using LPG Fuel with Sulfur Free Odorant)

  • 김재곤;이호길;임의순;정충섭
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.545-554
    • /
    • 2014
  • In general, odorant was added to fuel gases, such as LPG, LNG and city gas, to prevent gas poisoning, ignition, explosion, or other accident caused by fuel gases, and to enable immediate and easy detection of fuel-gas leakage by emitting an offensive smell. This study describes a study on the exhaust emissions characteristics and fuel economy of liquefied petroleum gas (LPG) vehicle using LPG fuel with new sulfur free odorant. New sulfur free odorant was added to LPG to reduce sulfur content of the LPG. Its performance and exhaust emission were compared to those of LPG with sulfur containing odorant (EM, ethyl mercaptan). Engine performance using LPG with sulfur free odorant was similar to that with sulfur-containing odorant. Exhaust emissions from the LPG vehicle with LPG including sulfur free odorant were also similar to those with LPG including sulfur containing odorant in the FTP 75 and NEDC mode. There experimental results suggest that the sulfur free odorant may substitute for the sulfur containing odorant in LPG fuel.

Deans Switching을 이용한 가스크로마토그래피에서 DME-LPG 혼합연료의 탄화수소 화합물 분석방법 (Determination Method of Hydrocarbon Compounds in DME-LPG Blending Fuels by Gas Chromatography with Deans Switching)

  • 연주민;박천규;임의순;정충섭
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.353-357
    • /
    • 2012
  • 액화석유가스(liquefied petroleum gas, LPG)에 디메틸에테르(dimethyl ether, DME)가 첨가된 DME-LPG 혼합연료의 탄화수소 화합물을 가스크로마토그래피(GC)를 이용하여 정성 정량분석하는 새로운 분석방법을 연구하였다. DME-LPG 혼합연료는 함산소화합물(oxygen-containing compound)인 극성의 DME와 비극성물질인 LPG로 구성되어 있기때문에 하나의 GC 컬럼에서 모든 성분을 완전히 분리하기가 어렵다. 따라서 서로 다른 성질의 화합물이나 아주 복잡한 화합물 중 목표물질의 분석에 응용되고 있는 Deans switching 시스템을 도입하였다. 상기 시스템은 두 개의 GC 컬럼 사이에 유체의 압력 제어를 통하여 용출되는 물질의 흐름 방향을 변경시켜주는 기술로서, 이 방법을 이용하여 DME와 LPG를 서로 다른 컬럼에서 분리하여 한번의 시료 주입으로 DME-LPG 혼합연료의 모든 탄화수소 화합물을 정성 정량분석할 수 있었다. 또한 DME 합성과정에서 부산물로 생성될 수 있는 메탄올, 포름산메틸, 에틸메틸에테르 같은 미량성분까지 분석이 가능하였다.

압축천연가스(CNG)버스와 액화석유가스(LPG)자동차 (Compressed Natural Gas Bus & Liquefied Petroleum Gas Vehicle)

  • 윤재건
    • 기술사
    • /
    • 제34권3호
    • /
    • pp.28-32
    • /
    • 2001
  • Using the CNG(compressed natural gas) and LPG(liquified petroleum gas) as the automotive fuel will be expanded because of their clean effect to the environmental air qualify. But these programs of gas using expansion would have a difficulty due to public consideration of gas utilities as a big hazard. The Ministry of Environment has an ambitious plan to substitute more than 25,000 buses with CNG and ensure more than 200 CNG refueling stations as well by the year of 2007. However, it is very difficult to establish new CNG and LPG refueling stations because of expanded safety distance than ever before by several major explosion accidents.

  • PDF

디젤엔진을 개조한 LPG엔진의 기관성능에 미치는 압축비의 영향 (Influence of Compression Ratio on Engine Performance in a LPG Engine Converted from a Diesel Engine)

  • 최경호;김진호;정연종;한성빈
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1178-1183
    • /
    • 2004
  • The purpose of this study was to investigate the influence of compression ratio on engine performance in a LPG(Liquefied Petroleum Gas) engine converted from a diesel engine. In ordor to determine the ideal compression ratio, a variable compression ratio 4-cylinder engine was developed. Retrofitting a diesel engine into a LPG engine is technically very complicated compared to a gasoline to LPG conversion. The cylinder head and the piston crown were modified to bum LPG in the engine. Compression ratios were increased from 8 to 10 in an increment of 0.5, the ignition timing was controlled to be at MBT(Minimum Spark Advance for Best Torque) for each case.