• Title/Summary/Keyword: Liquefied Natural Gas

Search Result 335, Processing Time 0.027 seconds

Thermodynamic Analysis of Power Generation Cycle Utilizing LNG (LNG 냉열이용 동력사이클 해석)

  • 최권일;장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.165-168
    • /
    • 1999
  • Thermodynamic cycle analysis has been performed for the power generation systems to utilize the cold energy of liquefied natural gas (LNG). Among many possible configurations of the cycle, the open Rankine cycle, the closed Rankine cycle, and the closed Brayton cycle are selecte for the analysis because of their practical importance. The power output per unit mass of LNG has been analytically calculated for various design parameters. The optimal conditions for the parameters to maximize the power output are presented and some of the design considerations are discussed.

  • PDF

Safety Assessment on Dispersion of BOG in LNG Fueling Station (LNG 자동차 충전소에서 BOG 확산에 따른 안전성평가 연구)

  • Lee, Seung Hyun;Kang, Seung Kyu;Lee, Young Soon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.76-82
    • /
    • 2012
  • A diesel-Liquefied natural gas(LNG) combustion engine truck fleet demonstration project had been carried out and commercial expansion project was launched. The key issues of these projects are the safety of LNG fuel station and the reduction of natural gas relief. When LNG is fueled to LNG vehicles the heat is input in the LNG system. The LNG in the fueling system was boiled and the vapor of LNG is vented through the safety devices. The temperature of the vapor of LNG is $-108^{\circ}C$ and density is heavier than air. It can be dispersed to downside of the fuel station. The safety evaluation is carried out using CFD program and risk assessment program for the vapor of LNG in the LNG vehicle fuel station. The hazards are identified and suggested the operation instruction to reduce the relief of LNG vapor.

Concept Design on Heating System for Supersonic Air-Breathing Engine Test Facility (초음속 유도무기 지상 시험용 가열기 개념 설계)

  • Han Poong-Gyoo;NamKoung Hyuck-Joon;Lee Kyoung-Hoon;Kim Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.321-326
    • /
    • 2006
  • Vitiated air heater which could supply air of 700K and 6 bar was designed conceptually for the firing test on the ground of the air breathing propulsion engines. This vitiated air heater consists of premixer with air and excessive gas oxygen, mixing head, combustor with gas passage, convergent-divergent nozzle and diffuser. the fuel was natural gas and/or liquefied natural gas. Through computational fluid dynamics, each component of the air heater was analyzed and flame-holding after ignition was investigated.

  • PDF

A Case Study on the Risk Assessment for Offshore Plant Solid Desiccant Dehydration Package by using HAZOP (HAZOP을 통한 해양플랜트 흡착식 탈수공정 패키지의 위험성평가 및 안전도 향상 방안)

  • Noh, Hyonjeong;Park, SangHyun;Cho, Su-gil;Kang, Kwangu;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.569-581
    • /
    • 2020
  • Since the dehydration packages of offshore plant deal directly with oil & gas, there is a great risk of fire and explosion during operation. Therefore, this study performed risk assessment through HAZard & OPerability (HAZOP) for solid desiccant dehydration package that can remove water component of natural gas in offshore floating liquefied natural gas (LNG) production facilities below 0.1 ppmv. The risk matrix was determined by dividing the likelihood and the severity into five levels separately by asset, life, environment and reputation. The piping & instrumentation diagram (P&ID) of the dehydration package was divided into 9 nodes. Total 22 deviations were assessed in consideration of the adsorption and desorption conversion cycle. A risk assessment based on deviations revealed 14 major hazards. Three representative types of hazards were open/close failure of the control valve, control failure of the heater, and abnormal operation of the regeneration gas cooler. Finally, we proposed the installation of additional safety devices to improve safety against these major hazards, such as safety instrumented functions, alarms, etc.

Engine Modeling and Validation for Control System Design of a Gaseous-fuel Engine (기체연료엔진의 제어시스템 설계를 위한 엔진 모델링 및 검증)

  • 심한섭;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.7-17
    • /
    • 2003
  • Highly accurate control of an air-fuel ratio is very important to reduce exhaust gas emissions of gaseous-fuel engines. In order to achieve this purpose, a precise engine model is required to estimate engine performance from the engine design process which is applied to the design of an engine controller. Engine dynamics are considered to develop a dynamic engine model of a gaseous-fuel engine. An effective air mass ratio is proposed to study variations of the engine dynamics according to the water vapor and the gaseous-fuel in the mixture. The dynamic engine model is validated with the LPG engine under steady and transient operating conditions. The experimental results in the LPG gaseous-fuel engine show that the estimation of the air flow and the air-fuel ratio based upon the effective air mass ratio is more accurate than that of a normal engine model.

Measurement of Calorific Value Using Flame Calorimeter (전자 소자를 이용한 연소열 측정)

  • Lim, Ki-Won;Jun, Jin-Young;Lee, Byeong-Jun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.40-47
    • /
    • 2010
  • Calorific value of mixed gas, like liquefied natural gas (LNG), is strongly depends on its compositions which are affected by the mining place and producing time. The variation in calorific value have an direct influence on the combustion characteristics and performances of boiler, burner, vehicle, power plants etc. Thus, developing experimental method to measure exact calorific value is becoming an issue in the related industrial fields. Flame calorimeter is developed to get calorific value at the dynamic equilibrium state using electric substitution method. Refrigerant-11 carries heat from combustor and/or heater to the Peltier elements which pumped it out to the cooling water. It is found out that error in the measured calorific value of methane is 2.86% compared with the theoretical one. Developed design technique and the experimental data will be applied to design the national standard gas calorific value measuring apparatus.

Design of reliability critical system using axiomatic design with FMECA

  • Goo, Bongeun;Lee, Joohee;Seo, Suwon;Chang, Daejun;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • In product design, the initial design stage is being increasingly emphasized because it significantly influences the successive product development and production stages. However, for larger and more complex products, it is very difficult to accurately predict product reliability in the initial design stage. Various design methodologies have been proposed to resolve this issue, but maintaining reliability while exploring design alternatives is yet to be achieved. Therefore, this paper proposes a methodology for conceptual design considering reliability issues that may arise in the successive detailed design stages. The methodology integrates the independency of axiomatic design and the hierarchical structure of failure mode, effects, and criticality analysis (FMECA), which is a technique widely used to analyze product reliability. We applied the proposed methodology to a liquefied natural gas fuel gas supply system to verify its effectiveness in the reliability improvement of the design process.

Design and Performance Test of a Direct Cooling Equipment for Hydrogen Liquefaction (수소액화용 직접냉각장치의 설계 및 성능시험)

  • Baik, Jong-Hoon;Kang, Byung-Ha;Chang, Ho-Myung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 1996
  • A direct cooling equipment for hydrogen liquefaction has been developed and tested. A direct cooling equipment consists of a liquefaction vessel, a radiation shield, a cryostat and a GM refrigerator. The cool-down and warm-up characteristics of the liquefaction apparatus have been investigated in detail. It is found that the hydrogen starts to be liquefied in the liquefaction vessel after 45 minutes of cool-down. The cool-down and warm-up tests of helium gas are also performed. The cool-down and warm-up characteristics of helium gas are found to be very different from those of hydrogen gas, since helium is not liquefied under the present operating conditions. When the liquefaction vessel is evacuated, natural convection phenomena of charged gas in liquefaction vessel can be removed. It is seen that the cool-down time of liquefaction vessel is substantially increased in vacuum environment.

  • PDF

Crack Propagation Analysis for IMO Type-B Independent Tank with Liquefied Natural Gas Carrier (LNG 운반선에 적용된 독립형 탱크의 균열 진전 해석에 관한 연구)

  • Kim, Beom-il;Shafiqul, Islam MD
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.529-537
    • /
    • 2021
  • Membrane-type hull and cargo holds have been designed and built for large ship. However, there is a growing interest in applying the same technology to small and medium-sized Liquefied natural gas(LNG) carriers to meet the recent increase in demand for LNG as an ecofriendly fuel and for expanding LNG bunkering infrastructure. The purpose of this study is to apply the IMO Type-B tank to small and medium-sized LNG carriers and verify the safety and suitability of the design. Fatigue crack propagation analysis was performed to install a partial second drip tray installed at the lower part of the LNG cargo tank by calculating the amount of leaked gas in the support structure supporting the cargo tank. First, a program for fatigue crack propagation analysis was developed, in which Paris' law and British Standard 7910 (BS 79110) were applied based on the International Code for the Construction of Equipment and Ships Carrying Liquefied Gases in Bulk, an international standard for LNG carriers. In addition, a surface crack propagation analysis was performed. Next, a methodology for assuming the initial through-crack size was developed to determine the size of the partial second barrier. The analysis was performed for 15 days, which is a possible return time after cracks are detected. Finally, the safety and suitability of the IMO Type-B for LNG cargo tanks required by international regulations were verified. For the accurate analysis of fatigue crack propagation, it is necessary to develop and verify the analysis procedure based on direct analysis and international regulations.