• Title/Summary/Keyword: Liquefied Natural Gas(LNG)

Search Result 261, Processing Time 0.028 seconds

A Study on Consequence Analysis of LNG/LPG/Gasoline Station (LNG/LPG/가솔린 Station의 사고피해영향평가 비교)

  • Yoo, Jin-Hwan;Kim, Bum-Su;Lee, Heon-Seok;Ko, Euy-Seok;Lee, Gi-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.54-60
    • /
    • 2009
  • The advancement of industry have increased domestic energy demands and energy facilities such as storage facility, compressed gas pipe, station, and tank lorry. Also, concern about environment have diversified energy source to clean energy such as LNG. In these major energy facilities, major accident can happen to result in fire, explosion, toxic release and etc. In addition, it may cause chain accidents to the adjacent energy facilities. In this research, safety assessment was performed through the consequence analysis of LPG liquefied petroleum gas) station, gasoline station and LNG(liquiefied natural gas) station. The obtained result will be helpful to make a safety guideline of the LPG/LNG station built adjacent to the gasoline station.

  • PDF

Thermodynamic Analysis of Power Generation Cycle Utilizing LNG Cold Energy (LNG 냉열을 이용하는 동력사이클 열역학 해석)

  • 최권일;장홍일
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.48-55
    • /
    • 1999
  • thermodynamic cycle analysis has been performed for the power generation systems to utilize the cold energy of liquefied natural gas (LNG). The power cycle used the air or water at room temperature as a heat source and the LNG at cryogenic temperature as a heat sink. Among manypossible configurations of the cycle. the open Rankine cycle. and the closed Brayton cycle, and the closed Rankine cycle are selected for the basic analysis because of their practical importance. The power output per unit mass of LNG has been analytically calculated for various design parameters such as the pressure ratio. the mass flow rate. the adiabatic efficiency. the heat exchanger effectiveness. or the working fluid. The optimal conditions for the parameters are presented to maximize the power output and the design considerations are discussed. It is concluded that the open Rankine cycle is the most recormmendable both in thermodynamic efficency and in practice.

  • PDF

A Study on the Price Evaluation Per 1 Ton of Liquefied Natural Gas According to the Refrigerants Supply Temperature in the Electric Refrigerator (전기식 냉동기에서 냉매의 공급온도에 따른 액화천연가스의 톤당 냉열 가격 산출에 대한 연구)

  • KIM, YONUNGWOO;PARK, ILSOO;CHO, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.473-477
    • /
    • 2019
  • In this paper, cold heat price contained in the 1 ton/h of LNG has been evaluated using PRO/II with PROVISION release 10.2 from Aveva company when LNG is used to liquefy several refrigerants instead of using vapor recompression refrigeration cycle. Normal butane, R134a, NH3, R22, propane and propylene refrigerants were selected for the modeling of refrigeration cycle. It was concluded that LNG cold heat price was inversely proportional to the refrigerant supply temperature, even though LNG supply flow rate is not varied according to the refrigerant supply temperature.

Design and Analysis of Hydrogen Production and Liquefaction Process by Using Liquefied Natural Gas (액화천연가스(LNG)를 사용한 수소 생산 및 액화 공정 개발)

  • Noh, Wonjun;Park, Sihwan;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.200-208
    • /
    • 2021
  • Compare to the gaseous hydrogen, liquid hydrogen has various advantages: easy to transport, high energy density, and low risk of explosion. However, the hydrogen liquefaction process is highly energy intensive because it requires lots of energy for refrigeration. On the other hand, the cold energy of the liquefied natural gas (LNG) is wasted during the regasification. It means there are opportunities to improve the energy efficiency of the hydrogen liquefaction process by recovering wasted LNG cold energy. In addition, hydrogen production by natural gas reforming is one of the most economical ways, thus LNG can be used as a raw material for hydrogen production. In this study, a novel hydrogen production and liquefaction process is proposed by using LNG as a raw material as well as a cold source. To develop this process, the hydrogen liquefaction process using hydrocarbon mixed refrigerant and the helium-neon refrigerant is selected as a base case design. The proposed design is developed by applying LNG as a cold source for the hydrogen precooling. The performance of the proposed process is analyzed in terms of energy consumption and exergy efficiency, and it is compared with the base case design. As the result, the proposed design shows 17.9% of energy reduction and 11.2% of exergy efficiency improvement compare to the base case design.

A Study on the Inner tank Seismic Analysis Model for Calculation of Seismic Forces of LNG Storage Tank (LNG저장탱크 지진력 산정을 위한 내부탱크 지진해석 모델에 관한 연구)

  • Kim, Miseung;Lee, Kangwon;Kim, Junhwi;Yoon, Ihnsoo
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2013
  • LNG(Liquefied Natural Gas) has been considered as the green energy. Thus, the demand of natural gas is keep increasing around the world, and various studies are actively under progress about the LNG storage tank. To calculate the seismic forces of actual LNG storage tank, FEM model has to include inner tank, outer tank, pile and soil to implement the interaction between structure and ground. So, this paper is represent the study about inner tank model of three cases using Malhotra method in EN 1998-4(European Standard). The results of calculation were compared, and the most suitable to inner tank model was suggested.

Development of partial liquefaction system for liquefied natural gas carrier application using exergy analysis

  • Choi, Jungho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.609-616
    • /
    • 2018
  • The cargo handling system, which is composed of a fuel gas supply unit and cargo tank pressure control unit, is the second largest power consumer in a Liquefied Natural Gas (LNG) carrier. Because of recent enhancements in ship efficiency, the surplus boil-off gas that remains after supplying fuel gas for ship propulsion must be reliquefied or burned to regulate the cargo tank pressure. A full or partial liquefaction process can be applied to return the surplus gas to the cargo tank. The purpose of this study is to review the current partial liquefaction process for LNG carriers and develop new processes for reducing power consumption using exergy analysis. The developed partial liquefaction process was also compared with the full liquefaction process applicable to a LNG carrier with a varying boil-off gas composition and varying liquefaction amounts. An exergy analysis showed that the Joule-Thomson valve is the key component needed for improvements to the system, and that the proposed system showed an 8% enhancement relative to the current prevailing system. A comparison of the study results with a partial/full liquefaction process showed that power consumption is strongly affected by the returned liquefied amount.

Study on the Comparison of New and Used Reliquefaction System of Boil-Off-Gas by LNG Cold Energy (냉열을 이용한 LNG 증발기체 BOG 재액화 신공정과 기존공정에 관한 비교연구)

  • Lee, Dong-Hyuck;Jang, Chang-Bong;Jung, Sang-Yong;Kim, Jung-Hwan;Lee, Heon-Seok;Kim, Bum-Su;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.42-46
    • /
    • 2010
  • BOG(Boil Off Gas) is formed about 0.05 vol%/day from LNG(Liquefied Natural Gas) tanks of LNG receiving terminal. To recycle the BOG using direct contacting, Previously the quantities of LNG and BOG is mixed at the ratio of 11:1 by mass. However simple this process uses, there is the difficulty of processing operation resulted from decrease of using LNG in summer. To complement these shortcomings, Advantages of the process are investigated by comparison of cost and analysis of the indirect contact method using LNG cold energy. It was studied that principles and types of development using LNG cold energy which is abandoned in the carburettor and found how to contact each to find the appropriate cold energy development process. Therefore, in this research, the indirect contact method will be investigated the feasibility of a comparative analysis by using HYSYS.

Parametric Investigation of BOG Generation for Ship-to-Ship LNG Bunkering

  • Shao, Yude;Lee, Yoon-Hyeok;Kim, You-Taek;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.352-359
    • /
    • 2018
  • As a fuel for ship propulsion, liquefied natural gas (LNG) is currently considered a proven and reasonable solution for meeting the IMO emission regulations, with gas engines for the LNG-fueled ship covering a broad range of power outputs. For an LNG-fueled ship, the LNG bunkering process is different from the HFO bunkering process, in the sense that the cryogenic liquid transfer generates a considerable amount of boil-off gas (BOG). This study investigated the effect of the temperature difference on boil-off gas (BOG) production during ship-to-ship (STS) LNG bunkering to the receiving tank of the LNG-fueled ship. A concept design was resumed for the cargo/fuel tanks in the LNG bunkering vessel and the receiving vessel, as well as for LNG handling systems. Subsequently, the storage tank capacities of the LNG were $4,500m^3$ for the bunkering vessel and $700m^3$ for the receiving vessel. Process dynamic simulations by Aspen HYSYS were performed under several bunkering scenarios, which demonstrated that the boil-off gas and resulting pressure buildup in the receiving vessel were mainly determined by the temperature difference between bunkering and the receiving tank, pressure of the receiving tank, and amount of remaining LNG.

The pressure drop characteristics in LNG heat exchanger of cryogenic cascade refrigeration cycle (초저온 캐스케이드 냉동사이클의 LNG 열교환기 압력강하 특성)

  • Yoon, J.I.;Choi, K.H.;Kwag, J.W.;Son, C.H.;Baek, S.M.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.376-381
    • /
    • 2012
  • Natural gas is converted in to LNG by chilling and liquefying the gas to the temperature of $-162^{\circ}C$, when liquefied, the volume of natural gas is reduced to 1/600th of its standard volume. This gives LNG the advantage in transportation. The pressure dorp of the cascade liquefaction cycle was investigated and simulated using HYSYS software. The simulation results showed that the pressure drop in the LNG heat exchanger is set to 50 kPa considering the increase in the compressor work of cryogenic cascade liquefaction cycle.

  • PDF

Analysis of Combustion Flow of LNG-Fueled Gas Turbine Swirl Burner (LNG 연료를 이용한 가스 터빈 연소기의 연소유동 해석)

  • Kim, Tae-Ho;Kang, Ki-Ha;Choi, Jeong-Yeol;Kim, Sung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.33-40
    • /
    • 2008
  • Two- and Three- dimensional numerical simulations are carried out to understand the combustion characteristics of LNG-fueled gas turbine combustor for power generation using imported and domestic natural gases. Reacting flow characteristics of the swirl stabilized natural gas combustor were understood from the numerical results with the flow conditions selected from the gas turbine operation data. The thermal influences of different natural gases were very small and the fuel composition and flow rate were considered to be tuned well. The flow structures of the recirculation and combustion region was understood from the comparison of the two- and three-dimensional results. The complexity of the three-dimensional swirl flows inside the gas turbine combustor with multiple swirlers was understood those resulting from the interactions of the stage and pilot burners.

  • PDF