• Title/Summary/Keyword: Lipschitz shadowing

Search Result 1, Processing Time 0.033 seconds

SHADOWING, EXPANSIVENESS AND STABILITY OF DIVERGENCE-FREE VECTOR FIELDS

  • Ferreira, Celia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.67-76
    • /
    • 2014
  • Let X be a divergence-free vector field defined on a closed, connected Riemannian manifold. In this paper, we show the equivalence between the following conditions: ${\bullet}$ X is a divergence-free vector field satisfying the shadowing property. ${\bullet}$ X is a divergence-free vector field satisfying the Lipschitz shadowing property. ${\bullet}$ X is an expansive divergence-free vector field. ${\bullet}$ X has no singularities and is Anosov.