• Title/Summary/Keyword: Lipschitz maps

Search Result 11, Processing Time 0.016 seconds

PROXIMITY MAPS FOR CERTAIN SPACES

  • Lee, Mun-Bae;Park, Sung-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.259-271
    • /
    • 1997
  • Let K be a nonempty subset of a normed linear space X and let x $\in$ X. An element k$_0$ in K satisfying $\$\mid$$x - k$_0$$\$\mid$$ = d(x, K) := (equation omitted) $\$\mid$$x - k$\$\mid$$ is called a best approximation to x from K. For any x $\in$ X, the set of all best approximations to x from K is denoted by P$_K$(x) = {k $\in$ K : $\$\mid$$ x - k $\$\mid$$ = d(x, K)}. (omitted)

  • PDF