본 연구에서는 인물영상에서 입술영역을 검출하기 위한 확률맵 기반 유전자 알고리즘을 제안한다. 하나의 최적해 탐색에 사용되었던 기존 유전자 알고리즘을 수정하여 입술과 같은 영역 검출에 부합하는 다수의 해를 얻도록 적용한다. 이를 위해 공간좌표를 의미하는 염색체로 각 개체를 표현하고, 보존구간, 세대수에 따른 부분 균일교배, 비중복 선택 등의 유전연산 방법을 도입한다. 또한 HSV 칼라공간에서 HS성분에 대한 확률맵을 제안하고, 이를 적용함으로써 유전자 알고리즘의 속성인 유사 색상에 대한 적응성을 더욱 증대한다. 실험을 통하여 제안 알고리즘의 성능을 좌우하는 주요 파라미터를 분석하였으며, 입술이외의 다른ROI(Region Of Interest)의 검출에도 유연하게 적응할 수 있음을 관찰하였다.
Lip reading is a field of image processing to assist the process of sound recognition. In some environment, the capture of sound signal usually has significant noise and therefore, the recognition rate of sound signal decreases. Lip reading can be a good feature for the increase of recognition rates. Conventional lip extraction methods have been proposed widely. Maia et. al. proposed a method by the sum of Cr and Cb. However, there are two problems as follows: the point with maximum saturation is not always regarded as lips region and the inner part of lips such as oral cavity and teeth can be classified as lips. To solve these problems, this paper proposes a method which adopts the histogram-based classifier for the extraction of lips region. The proposed method consists of two stages, learning and test. The amount of computation is minimized because this method has no color conversion. The performance of proposed method gives 66.8% of detection rate compared to 28% of conventional ones.
본 논문은 기하학적으로 왜곡된 입 모양을 보정하는 기법을 제안한다. 제안한 기법은 특징추출 단계와 보정 단계로 구성된다. 특징추출 단계에서는 원영상과 목적영상의 입술모델에 따라 각각의 특징과 특징점을 찾고 보정 단계에서는 부분 영상의 사상위치를 결정하고 어파인 변환을 적용하여 입의 왜곡을 보정한다. 여러 형태의 입모양을 실험한 결과, 많은 부분에 존재하는 왜곡이 보정된 것으로 나타났다.
We propose an algorithm to detect the face region using a variable ellipsoidal mask and a neural network. Since outlines of human faces are similar to ellipsoid, the ellipsoidal mask that has the fixed ratio of major and minor axis can be used to detect the candidate area. The positions of eyes and lips are extracted in this candidate area, and then the morphological analysis is applied to make features which are consist of six parameters, such as the geometrical ratio of eyes and lips. A back-propagation neural network is used as a classifier to determine the most possible face region. The experimental result is conducted to verify its efficiency compared with those of previous works.
AAM(Active Appearance Model)은 PCA(Principal Component Analysis)를 기반으로 객체의 형태(shape)와 질감(texture) 정보에 대한 통계적 모델을 통해 얼굴의 특징점을 검출하는 알고리즘으로 얼굴인식, 얼굴 모델링, 표정인식과 같은 응용에 널리 사용되고 있다. 하지만, AAM알고리즘은 초기 값에 민감하고 입력영상이 학습 데이터 영상과의 차이가 클 경우에는 검출 에러가 증가되는 문제가 있다. 특히, 입을 다문 입력얼굴 영상의 경우에는 비교적 높은 검출 정확도를 나타내지만, 사용자의 표정에 따라 입을 벌리거나 입의 모양이 변형된 얼굴 입력 영상의 경우에는 입술에 대한 검출 오류가 매우 증가되는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 입술 특징점 검출을 통해 정확한 입술 영역을 검출한 후에 이 정보를 이용하여 AAM을 수행함으로써 얼굴 특징점 검출 정확성을 향상시키는 방법을 제안한다. 본 논문에서는 AAM으로 검출한 얼굴 특징점 정보를 기반으로 초기 입술 탐색 영역을 설정하고, 탐색 영역 내에서 Canny 경계 검출 및 히스토그램 프로젝션 방법을 이용하여 입술의 양 끝점을 추출한 후, 입술의 양 끝점을 기반으로 재설정된 탐색영역 내에서 입술의 칼라 정보와 에지 정보를 함께 결합함으로써 입술 검출의 정확도 및 처리속도를 향상시켰다. 실험결과, AAM 알고리즘을 단독으로 사용할 때보다, 제안한 방법을 사용하였을 경우 입술 특징점 검출 RMS(Root Mean Square) 에러가 4.21픽셀만큼 감소하였다.
본 연구에서는 인물영상에서 입술영역을 검출하기 위한 확률맵 기반 유전자 알고리즘을 제안한다. 하나의 최적해 탐색에 사용되었던 기존 유전자 알고리즘을 수정하여 입술과 같은 영역 검출에 부합하는 다수의 해를 얻도록 적용한다. 이를 위해 공간좌표를 의미하는 염색체로 각 개체를 표현하고, 보존구간, 세대수에 따른 부분 균일교배, 비중복 선택 등의 유전연산 방법을 도입한다. 또한 HSV 칼라공간에서 HS성분에 대한 확률맵을 제안하고, 이를 적용함으로써 유전자 알고리즘의 속성인 유사 색상에 대한 적응성을 더욱 증대한다. 실험을 통하여 제안한 알고리즘의 성능을 좌우하는 주요 파라미터 분석, 종료 함수의 종료 조건 $\beta$의 최적값 평가 분석 그리고 교배 방법에 따른 성능 평가 결과를 분석하였으며, 입술 이외의 관심객체 변경에 따른 다른 ROI(Region Of Interest)의 검출에도 유연하게 적응할 수 있음을 관찰하였다.
본 논문에서는 텔레비전 칼라영상에서 사람의 피부색을 기반으로 얼굴영역을 검출하는 방법을 제안하였다. 제안된 방법은 피부색을 샘플링하여 기준영상으로 놓고, 텔레비전 영상의 화소와 기준영상의 화소 사이의 유클리디안(Euclidean) 거리를 이용하여 얼굴후보 영역결정을 하였다. 얼굴 후보영역에서 눈 검출은 RGB 칼라를 CMY칼라 모델로 변환 하여 Y와 C 사이의 색차성분에 대한 평균값과 표준 편차를 이용하여 검출 하였다. 입술 영역은 RGB 칼라모델에서 YIQ 칼라 공간으로 변환 하여 Q 요소로 입술 영상을 검출 하였다. 얼굴영역 검출은 눈 영상과 입술 영상을 논리연산 하여 지식 기반으로 결정 하였다. 제안된 방법의 타당성을 입증하기 위하여 텔레비전 칼라영상에서 입력받은 정면 칼라 영상으로 실험한 결과, 얼굴영역 검출이 얼굴의 위치와 크기에 관계없이 검출됨을 보였다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제26권4호
/
pp.310-322
/
2022
In this report, we apply an anomaly detection algorithm to a mobile oral health care application. In particular, we have investigated one class YOLOv3 as an anomaly detection model to classify pictures of mouths which will be used as inputs in the following machine learning model. We have achieved outstanding performances by proposing appropriate annotation strategies for our data sets and modifying the loss function. Moreover, the model can classify not only oral and non-oral pictures but also output preprocessed pictures that only contain the area around the lips by using the predicted bounding box. Thus, the model performs prediction and preprocessing simultaneously.
본 논문에서는 라만 분광법과 레이저 유도 플라즈마 분광법(LIPS)을 단일 유닛으로 결합한 새로운 형태의 이중 펄스 레이저 시스템을 제안하였다. 본 연구는 라만 분광법으로부터 분자 신호를 추출하면서, 동시에 레이저 유도 플라즈마 방출 신호를 향상시키고자 하였다. 달의 대기압과 같은 저압 조건에서는 플라즈마 신호 검출은 낮은 전자 밀도와 짧은 지속시간, 빠른 플라즈마 팽창 때문에 어려움을 마주치게 된다. 또한, 우주 탐사를 목표로 하는 검출 시스템의 통합에서, 레이저 시스템의 무게 최소화는 payload의 무게 측면에서 중요하다. 0.07 torr 미만의 저압 조건에서 높은 분해능의 스펙트럼 데이터를 제공하는 본 연구의 동시 분자 및 원자 검출방식은 8개의 암석을 이용하여 증명되었다. 이중 펄스 레이저로부터 생성된 연속된 플라즈마는 종래의 플라즈마 분광과 비교하여 방해석의 산소와 칼슘 신호를 2배 향상시킬 수 있었다.
기존에 PC 환경에서는 많은 입술 영역 검출 방법들이 제안되었는데, 자원이 제한되어있는 모바일 장치에서는 이런 방법들을 그대로 적용하면 실시간 동작이 어렵다. 이러한 문제를 해결하기 위하여, 본 논문은 모바일 장치에서 립리딩을 위한 실시간 입술 영역 검출 방법을 제안한다. 본 논문에서는 적응적 얼굴 색상 정보를 이용하여 얼굴 영역을 검출한 다음에 눈 검출을 하고 눈과 입술의 기하학적 관계를 이용하여 입술 영역을 검출한다. 제안된 알고리즘을 Intel PXA 270 임베디드 프로세서와 386MB 메모리를 가진 스마트 폰에 구현하여 실험한 결과 9.5 프레임/초의 속도로 동작하였고 574장의 영상에 대하여 검출 실험한 결과 98.8%의 검출 성공률을 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.